Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
PLoS Pathog ; 19(4): e1010862, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37011104

RESUMO

More than a hundred thousand dengue cases are diagnosed in India annually, and about half of the country's population carries dengue virus-specific antibodies. Dengue propagates and adapts to the selection pressures imposed by a multitude of factors that can lead to the emergence of new variants. Yet, there has been no systematic analysis of the evolution of the dengue virus in the country. Here, we present a comprehensive analysis of all DENV gene sequences collected between 1956 and 2018 from India. We examine the spatio-temporal dynamics of India-specific genotypes, their evolutionary relationship with global and local dengue virus strains, interserotype dynamics and their divergence from the vaccine strains. Our analysis highlights the co-circulation of all DENV serotypes in India with cyclical outbreaks every 3-4 years. Since 2000, genotype III of DENV-1, cosmopolitan genotype of DENV-2, genotype III of DENV-3 and genotype I of DENV-4 have been dominating across the country. Substitution rates are comparable across the serotypes, suggesting a lack of serotype-specific evolutionary divergence. Yet, the envelope (E) protein displays strong signatures of evolution under immune selection. Apart from drifting away from its ancestors and other contemporary serotypes in general, we find evidence for recurring interserotype drift towards each other, suggesting selection via cross-reactive antibody-dependent enhancement. We identify the emergence of the highly divergent DENV-4-Id lineage in South India, which has acquired half of all E gene mutations in the antigenic sites. Moreover, the DENV-4-Id is drifting towards DENV-1 and DENV-3 clades, suggesting the role of cross-reactive antibodies in its evolution. Due to the regional restriction of the Indian genotypes and immunity-driven virus evolution in the country, ~50% of all E gene differences with the current vaccines are focused on the antigenic sites. Our study shows how the dengue virus evolution in India is being shaped in complex ways.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Dengue/epidemiologia , Dengue/genética , Filogenia , Proteínas do Envelope Viral/genética , Sorogrupo , Genótipo , Índia/epidemiologia
2.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36795614

RESUMO

Non-structural protein (NS1) is a 350 amino acid long conserved protein in the dengue virus. Conservation of NS1 is expected due to its importance in dengue pathogenesis. The protein is known to exist in dimeric and hexameric states. The dimeric state is involved in its interaction with host proteins and viral replication, and the hexameric state is involved in viral invasion. In this work, we performed extensive structure and sequence analysis of NS1 protein, and uncovered the role of NS1 quaternary states in its evolution. A three-dimensional modeling of unresolved loop regions in NS1 structure is performed. "Conserved" and "Variable" regions within NS1 protein were identified from sequences obtained from patient samples and the role of compensatory mutations in selecting destabilizing mutations were identified. Molecular dynamics (MD) simulations were performed to extensively study the effect of a few mutations on NS1 structure stability and compensatory mutations. Virtual saturation mutagenesis, predicting the effect of every individual amino acid substitution on NS1 stability sequentially, revealed virtual-conserved and variable sites. The increase in number of observed and virtual-conserved regions across NS1 quaternary states suggest the role of higher order structure formation in its evolutionary conservation. Our sequence and structure analysis could enable in identifying possible protein-protein interfaces and druggable sites. Virtual screening of nearly 10,000 small molecules, including FDA-approved drugs, permitted us to recognize six drug-like molecules targeting the dimeric sites. These molecules could be promising due to their stable interactions with NS1 throughout the simulation.


Assuntos
Dengue , Mutação , Biologia Computacional , Proteínas não Estruturais Virais/genética
4.
J Indian Inst Sci ; 102(2): 783-789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093272

RESUMO

The Indian biomedical landscape has been characterized by the existence of somewhat polarized institutional structures and professional growth. While some scientific and public health challenges have been met with existing structures, there is still a large unmet scientific and public health need. Broadly, the physical separation of science, engineering, medical campuses and industry has led to silos of excellence and accomplishment with huge gaps in innovation and implementation. The lack of inter-disciplinary educational options has further reinforced the cultural underpinning of "guilds" that have found it difficult to collaborate. Strikingly, with almost a comparable number of institutions that train doctors in the allopathic or traditional disciplines such as Ayurveda, Unani etc., an "integrative medicine" framework has not emerged, apart from an over reliance on specialization at the expense of primary care. This paper is written by two physician-scientists, the first is located in a basic life science research center. The second, a practicing family physician, from the institutional anchor of a life sciences research institution. In this, we trace our experiences, primarily from a principal investigator's perspective, describing the scientific projects and try to explore the lessons learnt along the way. We will first describe the research in the lab's core area of human cervical cancer progression and our more recent effort with Dengue genomics and vaccine design. We then describe the lab's engagement with medical campuses and other agencies as well as review our various meetings and interactions so far with our colleagues from Africa to grasp what might be the "generalizable lessons" for the future. The Indian council of medical research initiated a program with Africa in health sciences. Building upon those interactions, we have taken some incremental steps in that direction and described our efforts.

5.
Cell Rep ; 40(12): 111390, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130502

RESUMO

Preservation of a small population of cancer stem cells (CSCs) within a heterogeneous carcinoma serves as a paradigm to understand how select cells in a tissue maintain their undifferentiated status. In both embryogenesis and cancer, Snail has been correlated with stemness, but the molecular underpinning of this phenomenon remains largely ill-defined. In models of cutaneous squamous cell carcinoma (cSCC), we discovered a non-epithelial-mesenchymal transition function for the transcription factor Snail in maintaining the stemness of epidermal keratinocytes. Snail-expressing cells secrete the matricellular protein Mindin, which functions in an autocrine fashion to activate a Src-STAT3 pathway to reinforce their stem/progenitor phenotype. This pathway is activated by the engagement of Mindin with the leukocyte-specific integrin, CD11b (ITGAM), which is also unexpectedly expressed by epidermal keratinocytes. Interestingly, disruption of this signaling module in human cSCC attenuates tumorigenesis, suggesting that targeting Mindin would be a promising therapeutic approach to hinder cancer recurrence.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Proteínas da Matriz Extracelular , Humanos , Integrinas/metabolismo , Proteínas de Neoplasias , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Neoplasias Cutâneas/patologia , Fatores de Transcrição da Família Snail/metabolismo
6.
Am J Transl Res ; 14(1): 20-54, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173828

RESUMO

MiRNAs (miRs) have been proven to be well-validated therapeutic targets. Emerging evidence has demonstrated that intricate, intrinsic and paradoxical functions of miRs are context-dependent because of their multiple upstream regulators, broad spectrum of downstream molecular targets and distinct expression in various tissues, organs and disease states. Targeted therapy has become an emerging field of research. One key for the development of successful miR-based/targeted therapy is to acquire integrated knowledge of its regulatory network and its association with disease phenotypes to identify critical nodes of the underlying pathogenesis. Herein, we systematically summarized the comprehensive role of miR-24-3p (miR-24), along with its passenger strands miR-24-1-5p* (miR-24-1) and miR-24-2-5p* (miR-24-2), emphasizing their microenvironment, intracellular targets, and associated gene networks and regulatory phenotypes in 18 different cancer types and 13 types of other disorders. MiR-24 targets and regulates numerous genes in various cancer types and enhances the expression of several oncogenes (e.g., cMyc, BCL2 and HIF1), which are challenging in terms of druggability. In contrast, several tumor suppressor proteins (p21 and p53) have been reported to be downregulated by miR-24. MiR-24 also regulates the cell cycle and is associated with numerous cancer hallmarks such as apoptosis, proliferation, metastasis, invasion, angiogenesis, autophagy, drug resistance and other diseases pathogenesis. Overall, miR-24 plays an emerging role in the diagnosis, prognosis and pathobiology of various diseases. MiR-24 is a potential target for targeted therapy in the era of precision medicine, which expands the landscape of targetable macromolecules, including undruggable proteins.

7.
Mol Ther Nucleic Acids ; 27: 165-174, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34976435

RESUMO

Selective targeting of biologically relevant RNAs with small molecules is a long-standing challenge due to the lack of clear understanding of the binding RNA motifs for small molecules. The standard SELEX procedure allows the identification of specific RNA binders (aptamers) for the target of interest. However, more effort is needed to identify and characterize the sequence-structure motifs in the aptamers important for binding to the target. Herein, we described a strategy integrating high-throughput (HT) sequencing with conventional SELEX followed by bioinformatic analysis to identify aptamers with high binding affinity and target specificity to unravel the sequence-structure motifs of pre-miRNA, which is essential for binding to the recently developed new water-soluble small-molecule CMBL3aL. To confirm the fidelity of this approach, we investigated the binding of CMBL3aL to the identified motifs by surface plasmon resonance (SPR) spectroscopy and its potential regulatory activity on dicer-mediated cleavage of the obtained aptamers and endogenous pre-miRNAs comprising the identified motif in its hairpin loop. This new approach would significantly accelerate the identification process of binding sequence-structure motifs of pre-miRNA for the compound of interest and would contribute to increase the spectrum of biomedical application.

8.
Mol Ther ; 30(5): 2058-2077, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34999210

RESUMO

The ongoing COVID-19 pandemic highlights the need to tackle viral variants, expand the number of antigens, and assess diverse delivery systems for vaccines against emerging viruses. In the present study, a DNA vaccine candidate was generated by combining in tandem envelope protein domain III (EDIII) of dengue virus serotypes 1-4 and a dengue virus (DENV)-2 non-structural protein 1 (NS1) protein-coding region. Each domain was designed as a serotype-specific consensus coding sequence derived from different genotypes based on the whole genome sequencing of clinical isolates in India and complemented with data from Africa. This sequence was further optimized for protein expression. In silico structural analysis of the EDIII consensus sequence revealed that epitopes are structurally conserved and immunogenic. The vaccination of mice with this construct induced pan-serotype neutralizing antibodies and antigen-specific T cell responses. Assaying intracellular interferon (IFN)-γ staining, immunoglobulin IgG2(a/c)/IgG1 ratios, and immune gene profiling suggests a strong Th1-dominant immune response. Finally, the passive transfer of immune sera protected AG129 mice challenged with a virulent, non-mouse-adapted DENV-2 strain. Our findings collectively suggest an alternative strategy for dengue vaccine design by offering a novel vaccine candidate with a possible broad-spectrum protection and a successful clinical translation either as a stand alone or in a mix and match strategy.


Assuntos
COVID-19 , Vacinas contra Dengue , Vírus da Dengue , Dengue , Vacinas de DNA , Anticorpos Neutralizantes , Anticorpos Antivirais , Dengue/prevenção & controle , Vacinas contra Dengue/genética , Vírus da Dengue/genética , Humanos , Pandemias , Proteínas do Envelope Viral/genética
9.
Front Microbiol ; 12: 647565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385981

RESUMO

BACKGROUND: Africa has one of the highest incidences of gonorrhea. Neisseria gonorrhoeae is gaining resistance to most of the available antibiotics, compromising treatment across the world. Whole-genome sequencing (WGS) is an efficient way of predicting AMR determinants and their spread in the population. Recent advances in next-generation sequencing technologies like Oxford Nanopore Technology (ONT) have helped in the generation of longer reads of DNA in a shorter duration with lower cost. Increasing accuracy of base-calling algorithms, high throughput, error-correction strategies, and ease of using the mobile sequencer MinION in remote areas lead to its adoption for routine microbial genome sequencing. To investigate whether MinION-only sequencing is sufficient for WGS and downstream analysis in resource-limited settings, we sequenced the genomes of 14 suspected N. gonorrhoeae isolates from Nairobi, Kenya. METHODS: Using WGS, the isolates were confirmed to be cases of N. gonorrhoeae (n = 9), and there were three co-occurrences of N. gonorrhoeae with Moraxella osloensis and N. meningitidis (n = 2). N. meningitidis has been implicated in sexually transmitted infections in recent years. The near-complete N. gonorrhoeae genomes (n = 10) were analyzed further for mutations/factors causing AMR using an in-house database of mutations curated from the literature. RESULTS: We observe that ciprofloxacin resistance is associated with multiple mutations in both gyrA and parC. Mutations conferring tetracycline (rpsJ) and sulfonamide (folP) resistance and plasmids encoding beta-lactamase were seen in all the strains, and tet(M)-containing plasmids were identified in nine strains. Phylogenetic analysis clustered the 10 isolates into clades containing previously sequenced genomes from Kenya and countries across the world. Based on homology modeling of AMR targets, we see that the mutations in GyrA and ParC disrupt the hydrogen bonding with quinolone drugs and mutations in FolP may affect interaction with the antibiotic. CONCLUSION: Here, we demonstrate the utility of mobile DNA sequencing technology in producing a consensus genome for sequence typing and detection of genetic determinants of AMR. The workflow followed in the study, including AMR mutation dataset creation and the genome identification, assembly, and analysis, can be used for any clinical isolate. Further studies are required to determine the utility of real-time sequencing in outbreak investigations, diagnosis, and management of infections, especially in resource-limited settings.

10.
Front Mol Biosci ; 7: 10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32118036

RESUMO

Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer caused either by Merkel cell polyomavirus (MCV) T antigen expression, post-integration (~80% cases), or by UV-mediated DNA damage. Interestingly, overall survival of MCV-positive Merkel cell carcinoma patients is better, making this differential information of significant diagnostic and prognostic value. Also, MCV provides a direct target for therapy in MCC patients. Currently, the methods used for diagnosis of MCV in tumors are often discordant and unreliable. Here we used a guided molecular scissors based-DNA Endonuclease Targeted CRISPR Trans Reporter (DETECTR) technique to develop an in vitro molecular diagnostic tool for MCV-positive MCC. DETECTR couples recombinase polymerase based amplification of target MCV DNA with Cas12a mediated detection. CRISPR diagnostics couple specific detection followed by cutting of the pathogenic DNA by the Cas enzyme-gRNA complex, with non-specific cutting of ssDNA that provides a measurable visual cue. To detect MCV DNA in MCC, we designed Cas12a gRNAs targeting the MCV DNA and tested their targeting efficiency, and sensitivity using a fluorophore quencher labeled reporter assay. We show that MCV DETECTR system can detect MCV integrated in Merkel tumor rapidly, specifically and with femto-molar sensitivity. Our study is a preliminary, proof-of-principle analysis showing the use of CRISPR for MCV diagnosis. Further validation in human tumor samples is needed for its clinical use in the near future. This new system is promising and we hope it can be coupled with immunohistochemical studies to diagnose the viral status of MCC in clinics soon.

11.
Exp Cell Res ; 385(2): 111682, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31634483

RESUMO

The initial discovery of key developmental signalling pathways, largely using classical genetic approaches in model organisms, was followed by an intense burst of characterisation of the molecular components. Studies also began demonstrating a role for these pathways in oncogenesis. Patterns of mutations in Notch pathway components, such as those reported in subsets of hematological malignancies, have been easier to study, and the cumulative information is leading to potentially new therapies. However, it has been more challenging to clearly define the role of the Notch pathway in human solid tumours, given the absence of widespread specific activating or repressive mutations in key components of the pathway. In this review, we trace more than two decades of work looking at the role of Notch signalling in human cervical cancer progression. We document the contrasting reports on a tumour suppressive role and pro-oncogenic role in cervical cancers. However, an analysis of recent genomic data strikingly shows both widespread features of Notch expression and genetic changes that largely amplify positive regulators and delete negative controllers of the Notch pathway. This analysis reinforces a largely pro-oncogenic role for Notch signalling and lays the foundation for a nuanced exploration of synergistic and targeted therapies. Lastly, we further trace some of the complex challenges in advanced cervical cancer progression, including issues of cancer stem cells and metastasis.


Assuntos
Receptores Notch/metabolismo , Transdução de Sinais , Neoplasias do Colo do Útero/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Receptores Notch/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
12.
Microb Pathog ; 137: 103778, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31600537

RESUMO

Merkel cell carcinoma is a rare, lethal cancer histopathologically composed of cells showing similarity with mechanoreceptor Merkel cells. Merkel cell tumors manifest in two distinct forms. While a virus called Merkel cell polyomavirus is involved in the pathogenesis of one form of Merkel tumors, the other is driven by ultraviolet (UV)-linked mutations. In this study we investigated 18 cases, from the Indian population, of Merkel cell carcinoma for immunohistochemical (IHC) expression of Merkel cell polyomavirus (MCV) T antigen, including 12 cases tested by PCR, to identify viral etiopathology. We tested the tumors with two sensitive antibodies (CM2B4 and Ab3), targeting the viral large T antigen protein and with PCR primers targeting the N terminus of T antigen. Overall, we observed 38.8% (7/18) tumors displaying positive IHC expression of Merkel cell polyomavirus T antigen and 25% (3/12) tumors showing positive results, by both, immunohistochemistry and PCR. This constitutes the first report from India showing implication of MCV in Merkel cell carcinomas. Moreover, this is one of the larger series of Merkel cell carcinomas, tested for MCV, by both immunohistochemistry and PCR, in this part of the world. These results further indicate that a slightly more number of such cases in India are likely to be caused by UV-linked damage, as opposed to Merkel cell polyomavirus mediated tumorigenesis, which is definitely implicated in a subset of cases.


Assuntos
Carcinoma de Célula de Merkel/virologia , Poliomavírus das Células de Merkel/isolamento & purificação , Infecções por Polyomavirus/virologia , Infecções Tumorais por Vírus/virologia , Adulto , Idoso , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Feminino , Humanos , Índia , Masculino , Poliomavírus das Células de Merkel/classificação , Poliomavírus das Células de Merkel/genética , Poliomavírus das Células de Merkel/metabolismo , Pessoa de Meia-Idade
13.
J Exp Clin Cancer Res ; 38(1): 392, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488179

RESUMO

BACKGROUND: Radioresistance remains a challenge to the successful treatment of various tumors. Intrinsic factors like alterations in signaling pathways regulate response to radiation. RhoC, which has been shown to modulate several tumor phenotypes has been investigated in this report for its role in radioresistance. In vitro and clinical sample-based studies have been performed to understand its contribution to radiation response in cervical cancer and this is the first report to establish the role of RhoC and its effector ROCK2 in cervical cancer radiation response. METHODS: Biochemical, transcriptomic and immunological approaches including flow cytometry and immunofluorescence were used to understand the role of RhoC and ROCK2. RhoC variants, siRNA and chemical inhibitors were used to alter the function of RhoC and ROCK2. Transcriptomic profiling was performed to understand the gene expression pattern of the cells. Live sorting using an intracellular antigen has been developed to isolate the cells for transcriptomic studies. RESULTS: Enhanced expression of RhoC conferred radioprotection on the tumor cells while inhibition of RhoC resulted in sensitization of cells to radiation. The RhoC overexpressing cells had a better DNA repair machinery as observed using transcriptomic analysis. Similarly, overexpression of ROCK2, protected tumor cells against radiation while its inhibition increased radiosensitivity in vitro. Further investigations revealed that ROCK2 inhibition abolished the radioresistance phenotype, conferred by RhoC on SiHa cells, confirming that it is a downstream effector of RhoC in this context. Additionally, transcriptional analysis of the live sorted ROCK2 high and ROCK2 low expressing SiHa cells revealed an upregulation of the DNA repair pathway proteins. Consequently, inhibition of ROCK2 resulted in reduced expression of pH2Ax and MRN complex proteins, critical to repair of double strand breaks. Clinical sample-based studies also demonstrated that ROCK2 inhibition sensitizes tumor cells to irradiation. CONCLUSIONS: Our data primarily indicates that RhoC and ROCK2 signaling is important for the radioresistance phenotype in cervical cancer tumor cells and is regulated via association of ROCK2 with the proteins of DNA repair pathway involving pH2Ax, MRE11 and RAD50 proteins, partly offering insights into the mechanism of radioresistance in tumor cells. These findings highlight RhoC-ROCK2 signaling involvement in DNA repair and urge the need for development of these molecules as targets to alleviate the non-responsiveness of cervical cancer tumor cells to irradiation treatment.


Assuntos
Reparo do DNA , Tolerância a Radiação/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Quinases Associadas a rho/metabolismo , Proteína de Ligação a GTP rhoC/genética , Proteína de Ligação a GTP rhoC/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Ligação Proteica , Transcriptoma , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/radioterapia
14.
Exp Cell Res ; 378(2): 206-216, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30772380

RESUMO

Metastatic progression is a major cause of mortality in cervical cancers, but factors regulating migratory and pre-metastatic cell populations remain poorly understood. Here, we sought to assess whether a SUV39H1-low chromatin state promotes migratory cell populations in cervical cancers, using meta-analysis of data from The Cancer Genome Atlas (TCGA), immunohistochemistry, genomics and functional assays. Cervical cancer cells sorted based on migratory ability in vitro have low levels of SUV39H1 protein, and SUV39H1 knockdown in vitro enhanced cervical cancer cell migration. Further, TCGA SUV39H1-low tumours correlated with poor clinical outcomes and showed gene expression signatures of cell migration. SUV39H1 expression was examined within biopsies, and SUV39H1low cells within tumours also demonstrated migratory features. Next, to understand genome scale transcriptional and chromatin changes in migratory populations, cell populations sorted based on migration in vitro were examined using RNA-Seq, along with ChIP-Seq for H3K9me3, the histone mark associated with SUV39H1. Migrated populations showed SUV39H1-linked migratory gene expression signatures, along with broad depletion of H3K9me3 across gene promoters. We show for the first time that a SUV39H1-low chromatin state associates with, and promotes, migratory populations in cervical cancers. Our results posit SUV39H1-low cells as key populations for prognosis estimation and as targets for novel therapies.


Assuntos
Movimento Celular , Metiltransferases/fisiologia , Proteínas Repressoras/fisiologia , Neoplasias do Colo do Útero/patologia , Linhagem Celular Tumoral , Cromatina , Feminino , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Metiltransferases/genética , Metástase Neoplásica , Proteínas Repressoras/genética , Resultado do Tratamento
15.
Int J Infect Dis ; 84S: S25-S33, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30528666

RESUMO

OBJECTIVE: To characterize the in vitro replication fitness, viral diversity, and phylogeny of dengue viruses (DENV) isolated from Indian patients. METHODS: DENV was isolated from whole blood collected from patients by passaging in cell culture. Passage 3 viruses were used for growth kinetics in C6/36 mosquito cells. Parallel efforts also focused on the isolation of DENV RNA from plasma samples of the same patients, which were processed for next-generation sequencing. RESULTS: It was possible to isolate 64 clinical isolates of DENV, mostly DENV-2. Twenty-five of these were further used for growth curve analysis in vitro, which showed a wide range of replication kinetics. The highest viral titers were associated with isolates from patients with dengue with warning signs and severe dengue cases. Full genome sequences of 21 DENV isolates were obtained. Genome analysis mapped the circulating DENV-2 strains to the Cosmopolitan genotype. CONCLUSIONS: The replication kinetics of isolates from patients with mild or severe infection did not differ significantly, but the viral titers varied by two orders of magnitude between the isolates, suggesting differences in replication fitness among the circulating DENV-2.


Assuntos
Vírus da Dengue/isolamento & purificação , Dengue/virologia , Animais , Sequência de Bases , Criança , Culicidae/virologia , Vírus da Dengue/classificação , Vírus da Dengue/genética , Genoma Viral , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Índia , Pediatria/estatística & dados numéricos , Filogenia , RNA Viral/genética
16.
Genome Announc ; 6(26)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29954887

RESUMO

Five complete (H1N1)pdm09 viral sequences were recovered from hospitalized individuals during the 2015 influenza outbreak by metagenomic sequencing. Four of the genomes are from oropharyngeal swabs, and one is from an isolate. All five sequences belong to an emerging 6B clade. Studying them further is critical for outbreak preparedness.

17.
Wellcome Open Res ; 3: 44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30167467

RESUMO

Background: Mosquito-borne flaviviruses, such as dengue and Japanese encephalitis virus (JEV), cause life-threatening diseases, particularly in the tropics. Methods: Here we performed unbiased metagenomic sequencing of RNA extracted from the serum of four patients and the plasma of one patient, all hospitalized at a tertiary care centre in South India with severe or prolonged febrile illness, together with the serum from one healthy control, in 2014. Results: We identified and assembled a complete dengue virus type 3 sequence from a case of severe dengue fever. We also identified a small number of JEV sequences in the serum of two adults with febrile illness, including one with severe dengue. Phylogenetic analysis revealed that the dengue sequence belonged to genotype III. It has an estimated divergence time of 13.86 years from the most highly related Indian strains. In total, 11 amino acid substitutions were predicted for this strain in the antigenic envelope protein, when compared to the parent strain used for development of the first commercial dengue vaccine.  Conclusions: We demonstrate that both genome assembly and detection of a low number of viral sequences are possible through the unbiased sequencing of clinical material. These methods may help ascertain causal agents for febrile illnesses with no known cause.

18.
Sci Rep ; 7(1): 17289, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29229929

RESUMO

Oestrogen controls Foxp3 expression in regulatory T cells (Treg cells) via a mechanism thought to involve oestrogen receptor alpha (ERα), but the molecular basis and functional impact of ERα signalling in Treg cells remain unclear. We report that ERα ligand oestradiol (E2) is significantly increased in human cervical cancer (CxCa) tissues and tumour-infiltrating Treg cells (CD4+CD25hiCD127low), whereas blocking ERα with the antagonist ICI 182,780 abolishes FOXP3 expression and impairs the function of CxCa infiltrating Treg cells. Using a novel approach of co-immunoprecipitation with antibodies to E2 for capture, we identified binding of E2:ERα complexes to FOXP3 protein in CxCa-derived Treg cells. Chromatin immunoprecipitation analyses of male blood Treg cells revealed ERα occupancy at the FOXP3 promoter and conserved non-coding DNA elements 2 and 3. Accordingly, computational analyses of the enriched regions uncovered eight putative oestrogen response elements predicted to form a loop that can activate the FOXP3 promoter. Together, these data suggest that E2-mediated ERα signalling is critical for the sustenance of FOXP3 expression and Treg cell function in human CxCa via direct interaction of ERα with FOXP3 promoter. Overall, our work gives a molecular insight into ERα signalling and highlights a fundamental role of E2 in controlling human Treg cell physiology.


Assuntos
Carcinoma de Células Escamosas/imunologia , Receptor alfa de Estrogênio/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regiões Promotoras Genéticas , Elementos de Resposta , Linfócitos T Reguladores/imunologia , Neoplasias do Colo do Útero/imunologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Estrogênios/metabolismo , Feminino , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Transdução de Sinais , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
19.
Cell Death Dis ; 8(1): e2547, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28079885

RESUMO

The deregulation of lineage control programs is often associated with the progression of haematological malignancies. The molecular regulators of lineage choices in the context of tyrosine kinase inhibitor (TKI) resistance remain poorly understood in chronic myeloid leukemia (CML). To find a potential molecular regulator contributing to lineage distribution and TKI resistance, we undertook an RNA-sequencing approach for identifying microRNAs (miRNAs). Following an unbiased screen, elevated miRNA182-5p levels were detected in Bcr-Abl-inhibited K562 cells (CML blast crisis cell line) and in a panel of CML patients. Earlier, miRNA182-5p upregulation was reported in several solid tumours and haematological malignancies. We undertook a strategy involving transient modulation and CRISPR/Cas9 (clustered regularly interspersed short palindromic repeats)-mediated knockout of the MIR182 locus in CML cells. The lineage contribution was assessed by methylcellulose colony formation assay. The transient modulation of miRNA182-5p revealed a biased phenotype. Strikingly, Δ182 cells (homozygous deletion of MIR182 locus) produced a marked shift in lineage distribution. The phenotype was rescued by ectopic expression of miRNA182-5p in Δ182 cells. A bioinformatic analysis and Hes1 modulation data suggested that Hes1 could be a putative target of miRNA182-5p. A reciprocal relationship between miRNA182-5p and Hes1 was seen in the context of TK inhibition. In conclusion, we reveal a key role for miRNA182-5p in restricting the myeloid development of leukemic cells. We propose that the Δ182 cell line will be valuable in designing experiments for next-generation pharmacological interventions.


Assuntos
Proliferação de Células/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , MicroRNAs/genética , Fatores de Transcrição HES-1/genética , Linhagem da Célula/genética , Resistencia a Medicamentos Antineoplásicos/genética , Células Eritroides/metabolismo , Células Eritroides/patologia , Proteínas de Fusão bcr-abl/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , MicroRNAs/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Fatores de Transcrição HES-1/biossíntese
20.
Eur J Cancer ; 60: 166-78, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27132080

RESUMO

BACKGROUND: In this study, building on our recent work identifying a subset of CD66+ve cells with distinctive tumourigenic properties in human cervical cancers, we examine patterns of expression and function of these cells; to generate insights into the process of metastasis. METHODS: Our broad approach in this study has been to compare the expression and function of two subsets marked by CD66 and CD49f. We use a combination of histopathology, immunostaining and flow cytometry, functional analysis of an established cervical cancer cell line and a retrospective analysis of a cohort of cervical cancer. RESULTS: We noted CD66 expression associated with clusters of cells which are spindle shaped, SMA+ve, podoplanin+ve, phalloidin high, fibronectin high, plakoglobin low, ki67-ve and CK10+ve at the migratory phase along with features of partial EMT. Further, TGFß1 a well known regulator of EMT, positively correlated with CD66 expression. The additional CD49f+ve subset at the leading invading front of migration was SMA-ve, phalloidin low, fibronectin low, plakoglobin high, Ki67+ve and CK14+ve. These data are consistent with a role for CD66 cells in metastatic invasion with a collective cell migration process co-opting the CD49f subset. Our retrospective analysis of a cohort is consistent with a role for CD66 in metastasis. However, the broad analysis of CD66, CD49f and TGFß1 expression with patterns of overall survival points to a possible protective effect particularly for local recurrences. Hence, future studies focussing on potential heterogeneity within the CD66 subset along with the possible role of isoforms and intra-cellular roles would be essential.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Integrina alfa6/metabolismo , Neoplasias do Colo do Útero/patologia , Carcinogênese/patologia , Movimento Celular/fisiologia , Progressão da Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Metástase Neoplásica , Fenótipo , Estudos Retrospectivos , Fator de Crescimento Transformador beta1/metabolismo , Neoplasias do Colo do Útero/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA