Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vet J ; : 106152, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821207

RESUMO

Bovine herpesvirus type 1 (BoAHV-1) infections lead to compromised herd health and significantly reduced productivity of affected cattle. While BoAHV-1 may cause rhinotracheitis, conjunctivitis, genital infections, and abortions, respiratory tract infections constitute the predominant clinical disease. Immune suppression induced by BoAHV-1 may contribute to co-infections initiating the bovine respiratory disease complex. In this review, the emphasis is to recapitulate the biology and the vaccine technologies currently in use and in development for BoAHV-1, and to discuss the major limitations. Studies on the life cycle and host interactions of BoAHV-1 have resulted in the identification of virulence factors. While several vaccine types, such as vectored vaccines and subunit vaccines, are under investigation, modified live and inactivated BoAHV-1 vaccines are still most frequently used in most areas of the world, whereas attenuated and inactivated marker vaccines are in use in Europe. The knowledge gained from studies on the biology of BoAHV-1 can form a basis for the rational design of future vaccines.

2.
Viruses ; 15(10)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37896835

RESUMO

Herpesviruses are enveloped and have an amorphous protein layer surrounding the capsid, which is termed the tegument. Tegument proteins perform critical functions throughout the viral life cycle. This review provides a comprehensive and comparative analysis of the roles of specific tegument proteins in capsid transport and virion morphogenesis of selected, well-studied prototypes of each of the three subfamilies of Herpesviridae i.e., human herpesvirus-1/herpes simplex virus-1 (Alphaherpesvirinae), human herpesvirus-5/cytomegalovirus (Betaherpesvirinae) and human herpesvirus -8/Kaposi's sarcomavirus (Gammaherpesvirinae). Most of the current knowledge is based on alpha herpesviruses, in particular HSV-1. While some tegument proteins are released into the cytoplasm after virus entry, several tegument proteins remain associated with the capsid and are responsible for transport to and docking at the nucleus. After replication and capsid formation, the capsid is enveloped at the nuclear membrane, which is referred to as primary envelopment, followed by de-envelopment and release into the cytoplasm. This requires involvement of at least three tegument proteins. Subsequently, multiple interactions between tegument proteins and capsid proteins, other tegument proteins and glycoproteins are required for assembly of the virus particles and envelopment at the Golgi, with certain tegument proteins acting as the central hub for these interactions. Some redundancy in these interactions ensures appropriate morphogenesis.


Assuntos
Herpesviridae , Herpesvirus Humano 1 , Herpesvirus Humano 8 , Humanos , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Montagem de Vírus , Herpesviridae/metabolismo , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 8/metabolismo , Morfogênese , Vírion/metabolismo , Proteínas Estruturais Virais/metabolismo
3.
Int J Biol Macromol ; 126: 229-237, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590144

RESUMO

The study involves the isolation and characterization of a serine peptidase, named SP, from Pseudomonas aeruginosa. In addition to basic characterization, the protein was engineered, by site-directed mutagenesis of selected non-catalytic residues, to increase its thermal stability and catalytic activity. Among the eight-point mutations, predicted by FireProt, two mutants, A29G and V336I, yielded a positive impact. The Tm of A29G and V336I showed an increase by 5 °C and also a substantial increase in residual activity of the enzyme at elevated temperature. Moreover, the catalytic activity of A29G and V336I also showed an increase of 1.4-fold activity, compared to the wild-type (WT). Moreover, molecular docking simulations also predicted better substrate affinity of the mutants. We have also performed molecular dynamics (MD) simulations at 315 and 345 K, and the MD data at 345 K demonstrates improved thermostability for the mutants, compared to the WT. Our findings not only contribute to a better understanding of the structure-stability-activity relationship of SP but also highlights, that modification of non-catalytic residues could also promote favourable catalytic behaviour.


Assuntos
Biocatálise , Engenharia de Proteínas/métodos , Serina Proteases/metabolismo , Temperatura , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Pseudomonas aeruginosa/enzimologia , Serina Proteases/química , Serina Proteases/isolamento & purificação
4.
BMC Biotechnol ; 18(1): 70, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30384832

RESUMO

BACKGROUND: Recombinant adeno-associated viruses (AAVs) are emerging as favoured transgene delivery vectors for both research applications and gene therapy. In this context, a thorough investigation of the potential of various AAV serotypes to transduce specific cell types is valuable. Here, we rigorously tested the infectivity of a number of AAV serotypes in murine testis by direct testicular injection. RESULTS: We report the tropism of serotypes AAV2, 5, 8, 9 and AAVrh10 in mouse testis. We reveal unique infectivity of AAV2 and AAV9, which preferentially target intertubular testosterone-producing Leydig cells. Remarkably, AAV2 TM, a mutant for capsid designed to increase transduction, displayed a dramatic alteration in tropism; it infiltrated seminiferous tubules unlike wildtype AAV2 and transduced Sertoli cells. However, none of the AAVs tested infected spermatogonial cells. CONCLUSIONS: In spite of direct testicular injection, none of the tested AAVs appeared to infect sperm progenitors as assayed by reporter expression. This lends support to the current view that AAVs are safe gene-therapy vehicles. However, testing the presence of rAAV genomic DNA in germ cells is necessary to assess the risk of individual serotypes.


Assuntos
Dependovirus/fisiologia , Terapia Genética/instrumentação , Vetores Genéticos/fisiologia , Testículo/virologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/classificação , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Células Intersticiais do Testículo/virologia , Masculino , Camundongos , Sorogrupo , Tropismo Viral
5.
J Gene Med ; 19(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28370939

RESUMO

This review concisely recapitulates the different existing modes of stent-mediated gene/drug delivery, their considerable advancement in clinical trials and a rationale for other merging new technologies such as nanotechnology and microRNA-based therapeutics, in addition to addressing the limitations in each of these perpetual stent platforms. Over the past decade, stent-mediated gene/drug delivery has materialized as a hopeful alternative for cardiovascular disease and cancer in contrast to routine conventional treatment modalities. Regardless of the phenomenal recent developments achieved by coronary interventions and cancer therapies that employ gene and drug-eluting stents, practical hurdles still remain a challenge. The present review highlights the limitations that each of the existing stent-based gene/drug delivery system encompasses and therefore provides a vision for the future with respect to discovering an ideal stent therapeutic platform that would circumvent all the practical hurdles witnessed with the existing technology. Further study of the improvisation of next-generation drug-eluting stents has helped to overcome the issue of restenosis to some extent. However, current stent formulations fall short of the anticipated clinically meaningful outcomes and there is an explicit need for more randomized trials aiming to further evaluate stent platforms in favour of enhanced safety and clinical value. Gene-eluting stents may hold promise in contributing new ideas for stent-based prevention of in-stent restenosis through genetic interventions by capitalizing on a wide variety of molecular targets. Therefore, the central consideration directs us toward finding an ideal stent therapeutic platform that would tackle all of the gaps in the existing technology.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Animais , Reestenose Coronária/tratamento farmacológico , Reestenose Coronária/genética , Sistemas de Liberação de Medicamentos/métodos , Stents Farmacológicos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA