Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(3): e16607, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38477387

RESUMO

Subsurface microorganisms make up the majority of Earth's microbial biomass, but ecological processes governing surface communities may not explain community patterns at depth because of burial. Depth constrains dispersal and energy availability, and when combined with geographic isolation across landscapes, may influence community assembly. We sequenced the 16S rRNA gene of bacteria and archaea from 48 sediment cores across 36 lakes in four disconnected mountain ranges in Wyoming, USA and used null models to infer assembly processes across depth, spatial isolation, and varying environments. Although we expected strong dispersal limitations across these isolated settings, community composition was primarily shaped by environmental selection. Communities consistently shifted from domination by organisms that degrade organic matter at the surface to methanogenic, low-energy adapted taxa in deeper zones. Stochastic processes-like dispersal limitation-contributed to differences among lakes, but because these effects weakened with depth, selection processes ultimately governed subsurface microbial biogeography.


Assuntos
Lagos , Microbiota , Lagos/microbiologia , RNA Ribossômico 16S/genética , Archaea/genética , Bactérias/genética , Microbiota/genética
2.
Ecol Lett ; 26(12): 2077-2086, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787116

RESUMO

Resource quantity controls biodiversity across spatial scales; however, the importance of resource quality to cross-scale patterns in species richness has seldom been explored. We evaluated the relationship between stream basal resource quantity (periphyton chlorophyll a) and invertebrate richness and compared this to the relationship of resource quality (periphyton stoichiometry) and richness at local and regional scales across 27 North American streams. At the local scale, invertebrate richness peaked at intermediate levels of chlorophyll a, but had a shallow negative relationship with periphyton C:P and N:P. However, at the regional scale, richness had a strong negative relationship with chlorophyll a and periphyton C:P and N:P. The divergent relationships of periphyton chlorophyll a and stoichiometry with invertebrate richness suggest that autochthonous resource quantity limits diversity more than quality, consistent with patterns of eutrophication. Collectively, we provide evidence that patterns in resource quantity and quality play important, yet differing roles in shaping freshwater biodiversity across spatial scale.


Assuntos
Ecossistema , Rios , Animais , Clorofila A , Invertebrados , Biodiversidade
3.
Ecol Evol ; 13(6): e10165, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37287851

RESUMO

Environmental change from anthropogenic activities threatens individual organisms, the persistence of populations, and entire species. Rapid environmental change puts organisms in a double bind, they are forced to contend with novel environmental conditions but with little time to respond. Phenotypic plasticity can act quickly to promote establishment and persistence of individuals and populations in novel or altered environments. In typical environmental conditions, fitness-related traits can be buffered, reducing phenotypic variation in expression of traits, and allowing underlying genetic variation to accumulate without selection. In stressful conditions, buffering mechanisms can break down, exposing underlying phenotypic variation, and permitting the expression of phenotypes that may allow populations to persist in the face of altered or otherwise novel environments. Using reciprocal transplant experiments of freshwater snails, we demonstrate that novel conditions induce higher variability in growth rates and, to a lesser degree, morphology (area of the shell opening) relative to natal conditions. Our findings suggest a potentially important role of phenotypic plasticity in population persistence as organisms face a rapidly changing, human-altered world.

4.
Evolution ; 77(7): 1522-1538, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37082829

RESUMO

Eco-evolutionary interactions following ecosystem change provide critical insight into the ability of organisms to adapt to shifting resource landscapes. Here we explore evidence for the rapid parallel evolution of trout feeding morphology following eco-evolutionary interactions with zooplankton in alpine lakes stocked at different points in time in the Wind River Range (Wyoming, USA). In this system, trout predation has altered the zooplankton species community and driven a decrease in average zooplankton size. In some lakes that were stocked decades ago, we find shifts in gill raker traits consistent with the hypothesis that trout have rapidly adapted to exploit available smaller-bodied zooplankton more effectively. We explore this morphological response in multiple lake populations across two species of trout (cutthroat trout, Oncorhynchus clarkii, and golden trout Oncorhynchus aguabonita) and examine the impact of resource availability on morphological variation in gill raker number among lakes. Furthermore, we present genetic data to provide evidence that historically stocked cutthroat trout populations likely derive from multiple population sources, and incorporate variation from genomic relatedness in our exploration of environmental predictors of feeding morphology. These findings describe rapid adaptation and eco-evolutionary interactions in trout and document an evolutionary response to novel, contemporary ecosystem change.


Assuntos
Ecossistema , Truta , Animais , Truta/genética , Fenótipo , Genoma , Adaptação Fisiológica
5.
PLoS One ; 15(10): e0239762, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002035

RESUMO

The dilution effect can occur by a range of mechanisms and results in reduced parasite prevalence in host taxa. In invaded ecosystems, the dilution effect can benefit native species if non-native species, acting as resistant or less competent hosts, reduce rates of parasitic infections in native species. In field experiments, we assessed whether manipulating biomass of the non-native snail, Potamopyrgus antipodarum, caused a dilution effect by reducing trematode infections in three taxa of native snails. In contrast to many studies showing resistant or less competent non-native hosts can "dilute" or reduce infection rates, we found no evidence for a dilution effect reducing infection rates of any of the native snails. We suggest that a dilution effect may not have occurred because most trematode taxa are highly host specific, and thus the trematode transmission stages did not recognize the invasive snail as a possible host. In this case, community composition appears to be important in influencing the dilution effect.


Assuntos
Espécies Introduzidas , Caramujos , Animais , Biodiversidade , Dinâmica Populacional , Caramujos/parasitologia , Trematódeos , Infecções por Trematódeos/veterinária , Wyoming
6.
Oecologia ; 185(4): 595-605, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29058123

RESUMO

We investigated whether previously documented variation among populations in availability of dietary phosphorus (P) is linked to heterogeneity in growth rate of the New Zealand freshwater snail Potamopyrgus antipodarum on a P-limited diet. We chose this system because P. antipodarum inhabits water bodies that vary in P availability and because P. antipodarum growth rate varies considerably in response to low P. We quantified specific growth rate and alkaline phosphatase (AP) expression in a diverse array of juvenile P. antipodarum fed high vs. low-P diets. We found strong associations between P content of epilithon in the source lake and P. antipodarum growth rate on high vs. low-P diets, with snails collected from lakes with relatively low-P epilithon showing the greatest increase in growth rate on the high-P relative to low-P diet. We also found substantial intraspecific variation in growth response to P limitation. Expression of AP also varied among lineages and was negatively associated with C: P of lake epilithon but did not explain the relationship between C: P in the lake of origin and sensitivity to P limitation. Together, our results demonstrate a strong signature of the P environment in the lake of origin on how this snail responds to P limitation as well as preliminary evidence for intraspecific variation of AP expression in animals.


Assuntos
Fósforo na Dieta/administração & dosagem , Fósforo/química , Caramujos/fisiologia , Animais , Dieta , Lagos/química , Nova Zelândia , Fósforo na Dieta/metabolismo
7.
PLoS One ; 9(4): e93985, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24699685

RESUMO

Phenotypic plasticity is likely to be important in determining the invasive potential of a species, especially if invasive species show greater plasticity or tolerance compared to sympatric native species. Here in two separate experiments we compare reaction norms in response to two environmental variables of two clones of the New Zealand mud snail, Potamopyrgus antipodarum, isolated from the United States, (one invasive and one not yet invasive) with those of two species of native snails that are sympatric with the invader, Fossaria bulimoides group and Physella gyrina group. We placed juvenile snails in environments with high and low conductivity (300 and 800 mS) in one experiment, and raised them at two different temperatures (16 °C and 22 °C) in a second experiment. Growth rate and mortality were measured over the course of 8 weeks. Mortality rates were higher in the native snails compared to P. antipodarum across all treatments, and variation in conductivity influenced mortality. In both experiments, reaction norms did not vary significantly between species. There was little evidence that the success of the introduced species is a result of greater phenotypic plasticity to these variables compared to the sympatric native species.


Assuntos
Espécies Introduzidas , Caramujos/crescimento & desenvolvimento , Animais , Eletrólitos/química , Fenótipo , Caramujos/genética , Simpatria , Temperatura
8.
PLoS One ; 9(1): e85845, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24454936

RESUMO

Local adaptation--typically recognized as higher values of fitness-related traits for native vs. non-native individuals when measured in the native environment--is common in natural populations because of pervasive spatial variation in the intensity and type of natural selection. Although local adaptation has been primarily studied in the context of biotic interactions, widespread variation in abiotic characteristics of environments suggests that local adaptation in response to abiotic factors should also be common. Potamopyrgus antipodarum, a freshwater New Zealand snail that is an important model system for invasion biology and the maintenance of sexual reproduction, exhibits local adaptation to parasites and rate of water flow. As an initial step to determining whether P. antipodarum are also locally adapted to phosphorus availability, we examined whether populations differ in their responses to phosphorus limitation. We found that field-collected juvenile P. antipodarum grew at a lower rate and reached an important size threshold more slowly when fed a relatively low vs. a relatively high-phosphorus diet. We also detected significant across-population variation in individual growth rate. A marginally significant population-by-dietary phosphorus interaction along with a two-fold difference across populations in the extent of suppression of growth by low phosphorus suggests that populations of P. antipodarum may differ in their response to phosphorus limitation. Local adaptation may explain this variation, with the implication that snails from lakes with relatively low phosphorus availability should be less severely affected by phosphorus limitation than snails from lakes with higher phosphorus availability.


Assuntos
Fósforo/deficiência , Caramujos/metabolismo , Animais , Dieta , Lagos , Caramujos/genética , Caramujos/crescimento & desenvolvimento , Especificidade da Espécie , Estresse Fisiológico , Triploidia
9.
Evolution ; 67(5): 1511-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23617926

RESUMO

Evolutionary and ecological factors that explain natural variation in ploidy level remain poorly understood. One intriguing possibility is that nutrient costs associated with higher per-cell nucleic acid content could differentially influence the fitness of different ploidy levels. Here, we test this hypothesis by determining whether access to phosphorus (P), a main component of nucleic acids, differentially affects growth rate in asexual freshwater snails (Potamopyrgus antipodarum) that differ in ploidy. As expected if larger genomes generate higher dietary P requirements, tetraploid P. antipodarum experienced a more than twofold greater reduction in growth rate in low-P versus high-P conditions relative to triploids. Mirroring these results, tetraploid P. antipodarum also had a significant reduction in body P content under low P relative to high P, whereas triploid body P content was unaffected. Taken together, these results set the stage for the possibility that P availability could influence the distribution and relative frequency of P. antipodarum of different ploidy levels. These findings could be applicable to many other animal taxa featuring ploidy-level variation, which includes many mixed sexual/asexual taxa.


Assuntos
Fósforo/farmacologia , Ploidias , Caramujos/efeitos dos fármacos , Animais , Genoma/efeitos dos fármacos , Crescimento/efeitos dos fármacos , Crescimento/genética , Caramujos/genética , Caramujos/crescimento & desenvolvimento
10.
Oecologia ; 163(3): 549-59, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20033217

RESUMO

Understanding the mechanisms that species use to succeed in new environments is vital to predicting the extent of invasive species impacts. Food quality is potentially important because it can affect population dynamics by affecting life history traits. The New Zealand mudsnail, Potamopyrgus antipodarum, is a worldwide invader. We examined how mudsnail growth rate and fecundity responded to the C:P ratio of algal food in laboratory conditions. Mudsnails fed low-P algae (C:P 1,119) grew more slowly, matured later, produced smaller offspring, and grew to a smaller adult size than snails reared on algae with high levels of P. A relatively small increase in algal C:P (203-270) significantly increased mudsnail age at maturity. We suggest that the relatively high body P requirements of mudsnails make them susceptible to allocation trade-offs between growth and reproduction under P-limited conditions. The elemental composition of algae varies greatly in nature, and over half of the rock biofilms in streams surveyed within the introduced range of mudsnails in the Greater Yellowstone Area had C:P ratios above which could potentially pose P limitation of life history traits. High growth rate and fecundity are common traits of many species that become invasive and are also associated with high-P demands. Therefore, fast-growing consumers with high P demands, such as mudsnails, are potentially more sensitive to P limitation suggesting that limitation of growth and reproduction by food quality is an important factor in understanding the resource demands of invasive species.


Assuntos
Dieta/veterinária , Eucariotos/metabolismo , Alimentos , Fósforo na Dieta/farmacologia , Caramujos/efeitos dos fármacos , Animais , Tamanho Corporal , Carbono/metabolismo , Eucariotos/química , Geografia , Nova Zelândia , Nitrogênio/metabolismo , Fósforo/metabolismo , Dinâmica Populacional , Reprodução/efeitos dos fármacos , Reprodução/fisiologia , Rios , Caramujos/crescimento & desenvolvimento , Caramujos/fisiologia
11.
Oecologia ; 116(4): 467-474, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28307515

RESUMO

Host-parasite interactions that result in host castration are evolutionarily similar to predator-prey interactions because both interactions terminate reproduction for the host or prey. Yet, host-parasite interactions differ from predator-prey interactions in that infected hosts remain alive and potentially can make adjustments to their life-history strategy before castration is complete. Here we exposed juvenile snails (Potamopyrgus antipodarum) to infection by a digenetic trematode (Microphallus sp.) in order to determine whether: (1) pre-reproductive individuals could be infected, (2) individuals that were exposed to infection shifted resources to early reproduction (fecundity compensation), and (3) infected individuals exhibit altered growth rates relative to uninfected individuals. We found that juveniles are susceptible to infection; hence P. antipodarum could be selected for earlier maturation in populations where the risk of infection is high. We also found that fecundity compensation does not occur in this snail. Finally, we found that Microphallus-infected snails exhibit altered growth rates; individuals infected as juveniles have lower growth rates and are smaller than uninfected snails. These results suggest that growth is altered by infection of a trematode parasite but reproduction in uninfected snails is not induced by exposure to trematode eggs.

12.
Oecologia ; 116(4): 575-582, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28307527

RESUMO

Host-parasite interactions that result in host castration are evolutionarily similar to predator-prey interactions because both interactions terminate reproduction for the host or prey. Yet, host-parasite interactions differ from predator-prey interactions in that infected hosts remain alive and potentially can make adjustments to their life-history strategy before castration is complete. Here we exposed juvenile snails (Potamopyrgus antipodarum) to infection by a digenetic trematode (Microphallus sp.) in order to determine whether: (1) pre-reproductive individuals could be infected, (2) individuals that were exposed to infection shifted resources to early reproduction (fecundity compensation), and (3) infected individuals exhibit altered growth rates relative to uninfected individuals. We found that juveniles are susceptible to infection; hence P. antipodarum could be selected for earlier maturation in populations where the risk of infection is high. We also found that fecundity compensation does not occur in this snail. Finally, we found that Microphallus-infected snails exhibit altered growth rates; individuals infected as juveniles have lower growth rates and are smaller than uninfected snails. These results suggest that growth is altered by infection of a trematode parasite but reproduction in uninfected snails is not induced by exposure to trematode eggs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA