Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(11): e0276164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36350876

RESUMO

BACKGROUND: Viral diseases are a major problem in shrimp aquaculture facilities as these diseases reduce growth rates, which inevitably lead to production and profit losses. Hepatopancreatic parvoviruses (HPV) are common diseases in shrimp that appear to be associated with high or low levels of replication in specific genetic lineages. Selective breeding may result in resistance to HPV and improved body traits such as body weight, meat yield and shrimp colour, facilitating shrimp farming. HPV virus titre is commonly determined by quantitative PCR (qPCR), which is a time-consuming method requiring laboratory equipment unsuitable for field implementation. The aim of this study was to develop a simple, robust, rapid and reliable method to detect HPV in low-resource environments. METHODS: We developed a rapid shrimp HPV test that uses (1) a simple three-step sample preparation protocol, followed by (2) isothermal recombinase polymerase amplification (RPA) and lateral flow strip detection (LFD). Analytical sensitivity testing was performed in a background banana shrimp sample matrix, and retrospective testing of Fenneropenaeus merguiensis hepatopancreas tissues (n = 33) with known qPCR viral titres was used to determine diagnostic sensitivity and specificity. RESULTS: The rapid shrimp HPV test could detect as little as 35 genome-equivalent copies per reaction in homogenized F. merguiensis banana shrimp. Retrospective testing of stored tissues (n = 33) indicated 100% diagnostic sensitivity (95% confidence interval, CI: 86-100%) and 100% specificity (95% CI: 66-100%) for detection of HPV. CONCLUSION: The rapid shrimp HPV test could be completed in only 40 minutes, and required only homogenization pestles, some pipettors, and a small heating block for single temperature incubation at 39°C. Critically, our procedure eliminated the time-consuming purification of nucleic acids from samples and when combined with RPA-LFD offers a user-friendly HPV detection format that can potentially be performed on-site. Our approach represents a major step forward in the development of a simple and sensitive end-point method for quick determination of unfavourable HPV virus numbers in shrimp, and has great potential to advance on-site management of shrimps in aquaculture.


Assuntos
Infecções por Papillomavirus , Parvovirus , Penaeidae , Animais , Recombinases , Estudos Retrospectivos , Penaeidae/genética , Sensibilidade e Especificidade , Parvovirus/genética , Técnicas de Amplificação de Ácido Nucleico/métodos
2.
J Zoo Wildl Med ; 49(3): 591-598, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30212311

RESUMO

The grey-headed flying fox ( Pteropus poliocephalus) is a species endemic to coastal eastern Australia. This study presents a comprehensive set of biochemistry, hematology, and urinalysis biomarkers from which reference values were derived. Blood samples collected from free-ranging P. poliocephalus were submitted for hematology ( n = 140) and plasma biochemistry ( n = 161) and urine for urinalysis ( n = 95). The values for P. poliocephalus were broadly consistent with those values published for other Australian Pteropus species. Statistically significant within-species age and sex effects were observed: adult P. poliocephalus had higher mean corpuscular volume, mean corpuscular hemoglobin, urea, creatinine, bilirubin, alanine transferase (ALT), protein, globulin, urinary specific gravity, and urinary ketones, whereas subadults had higher mean red blood cell, white blood cell (WBC), lymphocyte, and monocyte counts, and juveniles had higher mean neutrophil count and alkaline phosphatase; male P. poliocephalus had higher mean reticulocyte count, alanine transferase, glucose, and urinary ketones, whereas females had higher mean WBC, lymphocyte, and monocyte counts. The findings inform both clinical and research scenarios for P. poliocephalus in captivity or rehabilitation and for health assessments of free-living populations.


Assuntos
Análise Química do Sangue/veterinária , Quirópteros/sangue , Quirópteros/urina , Urinálise/veterinária , Envelhecimento , Alanina Transaminase , Fosfatase Alcalina , Animais , Animais Selvagens , Aspartato Aminotransferases , Austrália , Bilirrubina/sangue , Glicemia , Creatinina/sangue , Contagem de Eritrócitos/veterinária , Índices de Eritrócitos/veterinária , Feminino , Hemoglobinas , Contagem de Leucócitos/veterinária , Masculino , Contagem de Plaquetas/veterinária , Valores de Referência , Ureia/sangue
3.
Biol Open ; 7(2)2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29437044

RESUMO

Silks from orb-weaving spiders are exceptionally tough, producing a model polymer for biomimetic fibre development. The mechanical properties of naturally spun silk threads from two species of Australian orb-weavers, Nephila pilipes and Nephilaplumipes, were examined here in relation to overall thread diameter, the size and number of fibres within threads, and spider size. N. pilipes, the larger of the two species, had significantly tougher silk with higher strain capacity than its smaller congener, producing threads with average toughness of 150 MJ m-3, despite thread diameter, mean fibre diameter and number of fibres per thread not differing significantly between the two species. Within N. pilipes, smaller silk fibres were produced by larger spiders, yielding tougher threads. In contrast, while spider size was correlated with thread diameter in N. plumipes, there were no clear patterns relating to silk toughness, which suggests that the differences in properties between the silk of the two species arise through differing molecular structure. Our results support previous studies that found that the mechanical properties of silk differ between distantly related spider species, and extends on that work to show that the mechanical and physical properties of silk from more closely related species can also differ remarkably.

4.
PLoS One ; 10(10): e0140670, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26469523

RESUMO

Pteropid bats or flying-foxes (Chiroptera: Pteropodidae) are the natural host of Hendra virus (HeV) which sporadically causes fatal disease in horses and humans in eastern Australia. While there is strong evidence that urine is an important infectious medium that likely drives bat to bat transmission and bat to horse transmission, there is uncertainty about the relative importance of alternative routes of excretion such as nasal and oral secretions, and faeces. Identifying the potential routes of HeV excretion in flying-foxes is important to effectively mitigate equine exposure risk at the bat-horse interface, and in determining transmission rates in host-pathogen models. The aim of this study was to identify the major routes of HeV excretion in naturally infected flying-foxes, and secondarily, to identify between-species variation in excretion prevalence. A total of 2840 flying-foxes from three of the four Australian mainland species (Pteropus alecto, P. poliocephalus and P. scapulatus) were captured and sampled at multiple roost locations in the eastern states of Queensland and New South Wales between 2012 and 2014. A range of biological samples (urine and serum, and urogenital, nasal, oral and rectal swabs) were collected from anaesthetized bats, and tested for HeV RNA using a qRT-PCR assay targeting the M gene. Forty-two P. alecto (n = 1410) had HeV RNA detected in at least one sample, and yielded a total of 78 positive samples, at an overall detection rate of 1.76% across all samples tested in this species (78/4436). The rate of detection, and the amount of viral RNA, was highest in urine samples (>serum, packed haemocytes >faecal >nasal >oral), identifying urine as the most plausible source of infection for flying-foxes and for horses. Detection in a urine sample was more efficient than detection in urogenital swabs, identifying the former as the preferred diagnostic sample. The detection of HeV RNA in serum is consistent with haematogenous spread, and with hypothesised latency and recrudesence in flying-foxes. There were no detections in P. poliocephalus (n = 1168 animals; n = 2958 samples) or P. scapulatus (n = 262 animals; n = 985 samples), suggesting (consistent with other recent studies) that these species are epidemiologically less important than P. alecto in HeV infection dynamics. The study is unprecedented in terms of the individual animal approach, the large sample size, and the use of a molecular assay to directly determine infection status. These features provide a high level of confidence in the veracity of our findings, and a sound basis from which to more precisely target equine risk mitigation strategies.


Assuntos
Quirópteros/virologia , Vírus Hendra/isolamento & purificação , Infecções por Henipavirus/veterinária , Infecções por Henipavirus/virologia , Urina/virologia , Animais , Austrália , Quirópteros/classificação , Fezes/virologia , Feminino , Vírus Hendra/genética , Infecções por Henipavirus/transmissão , Doenças dos Cavalos/virologia , Cavalos , Masculino , Boca/virologia , Nariz/virologia , Reto/virologia , Soro/virologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA