Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cells ; 11(7)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35406666

RESUMO

Preclinical toxicity screening is the first and most crucial test that assesses the safety of new candidate drugs before their consideration for further evaluation in clinical trials. In vitro drug screening using stem cells has lately arisen as a promising alternative to the "gold standard" of animal testing, but their suitability and performance characteristics in toxicological studies have so far not been comprehensively investigated. In this study, we focused on the evaluation of human mesenchymal stem cells isolated from the matrix (Wharton's jelly) of fetal umbilical cord (WJSCs), which bear enhanced in vitro applicability due to their unique biological characteristics. In order to determine their suitability for drug-related cytotoxicity assessment, we adopted a high-throughput methodology that evaluated their sensitivity to a selected panel of chemicals in different culture environments. Cytotoxicity was measured within 48 h by means of MTS and/or NRU viability assays, and was compared directly (in vitro) or indirectly (in silico) to adult human mesenchymal stem cells and to reference cell lines of human and murine origin. Our data clearly suggest that human WJSCs can serve as a robust in vitro alternative for acute drug toxicity screening by uniquely combining rapid and versatile assay setup with high-throughput analysis, good representation of human toxicology, high reproducibility, and low cost.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Reprodutibilidade dos Testes , Cordão Umbilical
2.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374422

RESUMO

Lymphocyte-specific protein tyrosine kinase (Lck) is a pivotal tyrosine kinase involved in T cell receptor (TCR) signaling. Because of its importance, the activity of Lck is regulated at different levels including phosphorylation of tyrosine residues, protein-protein interactions, and localization. It has been proposed that the co-chaperone Cdc37, which assists the chaperone heat shock protein 90 (Hsp90) in the folding of client proteins, is also involved in the regulation of the activity/stability of Lck. Nevertheless, the available experimental data do not clearly support this conclusion. Thus, we assessed whether or not Cdc37 regulates Lck. We performed experiments in which the expression of Cdc37 was either augmented or suppressed in Jurkat T cells. The results of our experiments indicated that neither the overexpression nor the suppression of Cdc37 affected Lck stability and activity. Moreover, TCR signaling proceeded normally in T cells in which Cdc37 expression was either augmented or suppressed. Finally, we demonstrated that also under stress conditions Cdc37 was dispensable for the regulation of Lck activity/stability. In conclusion, our data do not support the idea that Lck is a Cdc37 client.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP90/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteína Sequestossoma-1/metabolismo , Benzoquinonas/farmacologia , Cálcio/metabolismo , Inativação Gênica , Humanos , Células Jurkat , Lactamas Macrocíclicas/farmacologia , Chaperonas Moleculares/metabolismo , Fosforilação , Ligação Proteica , Proteostase , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
3.
Sci Signal ; 10(462)2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28096507

RESUMO

The enzymatic activity of the Src family tyrosine kinase p56Lck (Lck) is tightly controlled by differential phosphorylation of two tyrosine residues, Tyr394 and Tyr505 Phosphorylation of Tyr394 and the conformational opening of Lck are believed to activate the kinase, whereas Tyr505 phosphorylation is thought to generate a closed, inactive conformation of Lck. We investigated whether the conformation of Lck and its phosphorylation state act in concert to regulate the initiation of T cell receptor (TCR) signaling. With a sensitive biosensor, we used fluorescence lifetime imaging microscopy (FLIM) to investigate the conformations of wild-type Lck and its phosphorylation-deficient mutants Y394F and Y505F and the double mutant Y394F/Y505F in unstimulated T cells and after TCR stimulation. With this approach, we separated the conformational changes of Lck from the phosphorylation state of its regulatory tyrosines. We showed that the conformational opening of Lck alone was insufficient to initiate signaling events in T cells. Rather, Lck additionally required phosphorylation of Tyr394 to induce T cell activation. Consistent with the FLIM measurements, an optimized immunofluorescence microscopy protocol revealed that the TCR-stimulated phosphorylation of Lck at Tyr394 occurred preferentially at the plasma membrane of Jurkat cells and primary human T cells. Our study supports the hypothesis that T cell activation through the TCR complex is accompanied by the de novo activation of Lck and that phosphorylation of Tyr394 plays a role in Lck function that goes beyond inducing an open conformation of the kinase.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Western Blotting , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Células Jurkat , Ativação Linfocitária , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Microscopia Confocal , Microscopia de Fluorescência , Mutação , Fosforilação , Conformação Proteica , Linfócitos T/metabolismo , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
4.
Clin Kidney J ; 9(1): 1-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26798455

RESUMO

The redox equilibrium is crucial for the maintenance of immune homeostasis. Here, we summarize recent data showing that oxidation regulates T-cell functions and that alterations of the redox equilibrium may play an important role in the pathogenesis of inflammatory conditions affecting the kidneys. We further discuss potential links between oxidation, T cells and renal diseases such as systemic lupus erythematosus, renal ischaemia/reperfusion injury, end-stage renal disease and hypertension. The basic understanding of oxidation as a means by which diseases are directly affected results in unexpected pathophysiological similarities. Finally, we describe potential therapeutic options targeting redox systems for the treatment of nephropathies affecting humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA