Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JOR Spine ; 7(1): e1286, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38234974

RESUMO

Background: Intervertebral disc degeneration (IDD) is a leading contributor to low back pain (LBP). Autophagy, strongly activated by hypoxia and nutrient starvation, is a vital intracellular quality control process that removes damaged proteins and organelles to recycle them for cellular biosynthesis and energy production. While well-established as a major driver of many age-related diseases, autophagy dysregulation or deficiency has yet been confirmed to cause IDD. Methods: In vitro, rat nucleus pulposus (NP) cells treated with bafilomycin A1 to inhibit autophagy were assessed for glycosaminoglycan (GAG) content, proteoglycan synthesis, and cell viability. In vivo, a transgenic strain (Col2a1-Cre; Atg7 fl/fl) mice were successfully generated to inhibit autophagy primarily in NP tissues. Col2a1-Cre; Atg7 fl/fl mouse intervertebral discs (IVDs) were evaluated for biomarkers for apoptosis and cellular senescence, aggrecan content, and histological changes up to 12 months of age. Results: Here, we demonstrated inhibition of autophagy by bafilomycin produced IDD features in the rat NP cells, including increased apoptosis and cellular senescence (p21 CIP1) and decreased expression of disc matrix genes Col2a1 and Acan. H&E histologic staining showed significant but modest degenerative changes in NP tissue of Col2a1-Cre; Atg7 fl/fl mice compared to controls at 6 and 12 months of age. Intriguingly, 12-month-old Col2a1-Cre; Atg7 fl/fl mice did not display increased loss of NP proteoglycan. Moreover, markers of apoptosis (cleaved caspase-3, TUNEL), and cellular senescence (p53, p16 INK4a , IL-1ß, TNF-α) were not affected in 12-month-old Col2a1-Cre; Atg7 fl/fl mice compared to controls. However, p21 CIP1and Mmp13 gene expression were upregulated in NP tissue of 12-month-old Col2a1-Cre; Atg7 fl/fl mice compared to controls, suggesting p21 CIP1-mediated cellular senescence resulted from NP-targeted Atg7 knockout might contribute to the observed histological changes. Conclusion: The absence of overt IDD features from disrupting Atg7-mediated macroautophagy in NP tissue implicates other compensatory mechanisms, highlighting additional research needed to elucidate the complex biology of autophagy in regulating age-dependent IDD.

2.
J Cell Physiol ; 237(2): 1266-1284, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34787318

RESUMO

Intervertebral disc degeneration (IDD) is a leading contributor to low back pain. The intervertebral disc (IVD) is composed of three tissue types: the central gelatinous nucleus pulposus (NP) tissue, the surrounding annulus fibrosus (AF) tissue, and the inferior and superior cartilage endplates. The IVD microenvironment is hypoxic, acidic, hyperosmotic, and low in nutrients because it is mostly avascular. The cellular processes that underlie IDD initiation and progression are still poorly understood. Specifically, a lack of understanding regarding NP cell metabolism and physiology hinders the development of effective therapeutics to treat IDD patients. Autophagy is a vital intracellular degradation process that removes damaged organelles, misfolded proteins, and intracellular pathogens and recycles the degraded components for cellular energy and function. NP cells have adapted to survive within their harsh tissue microenvironment using processes that are largely unknown, and we postulate autophagy is one of these undiscovered mechanisms. In this review, we describe unique features of the IVD tissue, review how physiological stressors impact autophagy in NP cells in vitro, survey the current understanding of autophagy regulation in the IVD, and assess the relationship between autophagy and IDD. Published studies confirm autophagy markers are present in IVD tissue, and IVD cells can regulate autophagy in response to cellular stressors in vitro. However, data are still lacking to determine the exact mechanisms regulating autophagy in IVD cells. More in-depth research is needed to establish whether autophagy is necessary to maintain IVD cell health and validate autophagy as a relevant therapeutic target for treating IDD.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Anel Fibroso/metabolismo , Autofagia , Humanos , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo
3.
JOR Spine ; 3(4): e1112, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33392450

RESUMO

Suppression of the insulin-like growth factor-1 (IGF-1) signaling pathway reduces age-related disorders and increases lifespan across species, making the IGF-1 pathway a key regulator of aging. Previous in vitro intervertebral disc cell studies have reported the pro-anabolic effect of exogenously adding IGF-1 on matrix production. However, the overall effects of suppressing IGF-1 signaling on age-related intervertebral disc degeneration (IDD) is not known. Here, the effects of suppressing IGF-1 signaling on age-related IDD in vivo were examined using PAPPA -/- mice. These are animals with targeted deletion of pregnancy-associated plasma protein A (PAPPA), the major protease that cleaves inhibitory IGF binding proteins that control bioavailability of IGF-1 for cell signaling. Compared to age-matched wild-type (Wt) littermates, reduced levels of matrix proteoglycan (PG) and aggrecan were seen in discs of 23-month old PAPPA -/- mice. Decreased aggrecanolysis and expression of two key catabolic markers, matrix metalloproteinase-3 and a disintegrin and metalloproteinase with thrombospondin motifs-4, were also observed in discs of old PAPPA -/- mice compared to Wt littermates. Suppressing IGF-1 signaling has been implicated to shift cellular metabolism toward maintenance rather than growth and decreasing cellular senescence. Along this line, discs of old PAPPA -/- mice also exhibited lower cellular senescence, assessed by p53 and lamin B1 markers. Collectively, the data reveal complex regulation of disc matrix homeostasis by PAPPA/IGF-1 signaling during chronologic aging, that is, reduced IGF-1 bioavailability confers the benefit of decreasing disc cellular senescence and matrix catabolism but also the disadvantage of decreasing disc PG matrix anabolism. This pathway requires further mechanistic elucidation before IGF-1 could be considered as a therapeutic growth factor for treating IDD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA