Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Eur Food Res Technol ; : 1-10, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37362347

RESUMO

The so-called "craft beer revolution" has increased the demand for new styles of beers, often with new ingredients like flavour extracts. In recent years, synthetic biology has realized the production of a plethora of plant secondary metabolites in microbial hosts, which could provide an alternative source for these compounds. In this study, we selected a in situ flavour production approach for grape flavour addition. We used an O-methyl anthranilate (OmANT) producing laboratory Saccharomyces cerevisiae strain in co-fermentations with an industrial beer yeast strain WLP644. The laboratory strain provided an ease of genetic manipulation and the desirable properties of the WLP644 strain were not modified in this approach. In shake flasks, a 10:90 ratio of the yeasts produced grape flavoured beer with the yeast produced flavour compound in a range normally used for flavoured beverages. Hopped and unhopped beers were analysed by VTT's trained sensory panel and with olfactory GC-MS. OmANT was successfully detected from the beers as a floral odour and flavour. Moreover, no off-flavours were detected and aroma profiles outside the grape flavour were rather similar. These results indicate that the co-fermentation principle is a suitable approach to change the flavour profiles of beers with a simple yeast strain drop-in approach. Supplementary Information: The online version contains supplementary material available at 10.1007/s00217-023-04274-1.

2.
Appl Microbiol Biotechnol ; 106(13-16): 4929-4944, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35851416

RESUMO

There is a growing appreciation for the role that yeast play in biotransformation of flavour compounds during beverage fermentations. This is particularly the case for brewing due to the continued popularity of aromatic beers produced via the dry-hopping process. Here, we review the current literature pertaining to biotransformation reactions mediated by fermentative yeasts. These reactions are diverse and include the liberation of thiols from cysteine or glutathione-bound adducts, as well as the release of glycosidically bound terpene alcohols. These changes serve generally to increase the fruit and floral aromas in beverages. This is particularly the case for the thiol compounds released via yeast ß-lyase activity due to their low flavour thresholds. The role of yeast ß-glucosidases in increasing terpene alcohols is less clear, at least with respect to fermentation of brewer's wort. Yeast acetyl transferase and acetate esterase also have an impact on the quality and perceptibility of flavour compounds. Isomerization and reduction reactions, e.g. the conversion of geraniol (rose) to ß-citronellol (citrus), also have potential to alter significantly flavour profiles. A greater understanding of biotransformation reactions is expected to not only facilitate greater control of beverage flavour profiles, but also to allow for more efficient exploitation of raw materials and thereby greater process sustainability. KEY POINTS: • Yeast can alter and boost grape- and hop-derived flavour compounds in wine and beer • ß-lyase activity can release fruit-flavoured thiols with low flavour thresholds • Floral and citrus-flavoured terpene alcohols can be released or interconverted.


Assuntos
Liases , Saccharomyces cerevisiae , Álcoois/metabolismo , Cerveja , Biotransformação , Fermentação , Aromatizantes/metabolismo , Frutas/metabolismo , Liases/metabolismo , Saccharomyces cerevisiae/metabolismo , Compostos de Sulfidrila/metabolismo , Terpenos/metabolismo , Leveduras/metabolismo
3.
Food Microbiol ; 106: 104032, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690438

RESUMO

Malt-induced premature yeast flocculation (PYF) is a sporadic problem within the brewing industry. The use of PYF malts is concomitant with a number of negative impacts on beer quality, including incomplete fermentation and/or flavor defects. Although malt-induced PYF is widely acknowledged, actions taken so far have proved insufficient to solve the PYF-related issues. To limit the detrimental effects of PYF malts on beer production, an adaptive laboratory evolution (ALE) process was applied in this study to an industrial lager brewing yeast strain (TT02), in an attempt to generate variant strains with improved fermentation performance in PYF wort. Through a batch fermentation-based adaptation process, evolved variants were isolated and screened for their phenotypic and metabolic traits. The investigation focused mainly on the tendency to remain in suspension, fermentation capacity and final acetaldehyde concentration. We successfully obtained a variant (TT02-30 T) with improved fermentation properties. The improvement was seen in worts prepared from different types of PYF malt as well as normal malt. Furthermore, ALE of lager brewing yeast in PYF wort yielded a wide array of mutations. Several changes in the genomes (copy number variation in flocculin encoding gene FLO1 and a missense SNP in a putative mitochondrial membrane protein coding gene FMP10) of the variant strains relative to the original strain were observed. These could potentially contribute to the improved yeast suspension during fermentation. Importantly, mutational enrichment in genes related to ion binding in PYF-evolved strains suggests the involvement of the yeast ion transportation process in dealing with the PYF stress. Our study demonstrates the possibility of attenuating yeast sensitivity to PYF malts over time through adaptive laboratory evolution via spontaneous mutation.


Assuntos
Cerveja , Saccharomyces cerevisiae , Cerveja/análise , Variações do Número de Cópias de DNA , Fermentação , Floculação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Nat Commun ; 13(1): 2580, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545616

RESUMO

Breeding and domestication have generated widely exploited crops, animals and microbes. However, many Saccharomyces cerevisiae industrial strains have complex polyploid genomes and are sterile, preventing genetic improvement strategies based on breeding. Here, we present a strain improvement approach based on the budding yeasts' property to promote genetic recombination when meiosis is interrupted and cells return-to-mitotic-growth (RTG). We demonstrate that two unrelated sterile industrial strains with complex triploid and tetraploid genomes are RTG-competent and develop a visual screening for easy and high-throughput identification of recombined RTG clones based on colony phenotypes. Sequencing of the evolved clones reveal unprecedented levels of RTG-induced genome-wide recombination. We generate and extensively phenotype a RTG library and identify clones with superior biotechnological traits. Thus, we propose the RTG-framework as a fully non-GMO workflow to rapidly improve industrial yeasts that can be easily brought to the market.


Assuntos
Melhoramento Vegetal , Proteínas de Saccharomyces cerevisiae , Meiose , Poliploidia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Front Microbiol ; 13: 747546, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369501

RESUMO

Traditional Norwegian Farmhouse ale yeasts, also known as kveik, have captured the attention of the brewing community in recent years. Kveik were recently reported as fast fermenting thermo- and ethanol tolerant yeasts with the capacity to produce a variety of interesting flavor metabolites. They are a genetically distinct group of domesticated beer yeasts of admixed origin with one parent from the "Beer 1" clade and the other unknown. While kveik are known to ferment wort efficiently at warmer temperatures, their range of fermentation temperatures and corresponding fermentation efficiencies, remain uncharacterized. In addition, the characteristics responsible for their increased thermotolerance remain largely unknown. Here we demonstrate variation in kveik strains at a wide range of fermentation temperatures and show not all kveik strains are equal in fermentation performance and stress tolerance. Furthermore, we uncovered an increased capacity of kveik strains to accumulate intracellular trehalose, which likely contributes to their increased thermo- and ethanol tolerances. Taken together our results present a clearer picture of the future opportunities presented by Norwegian kveik yeasts and offer further insight into their applications in brewing.

6.
Yeast ; 39(1-2): 156-169, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34664308

RESUMO

A number of fungal isolates were recently obtained from a survey of the microbiota of multiple breweries and brewery products. Here, we sought to explore whether any of these brewery contaminants could be repurposed for beneficial use in beer fermentations, with particular focus on low-alcohol beer. There were 56 yeast strains first screened for the utilization of different carbon sources, ability to ferment brewer's wort, and formation of desirable aroma compounds. A number of strains appeared maltose-negative and produced desirable aromas without obvious off-flavours. These were selected for further scaled-up wort fermentations. The selected strains efficiently reduced wort aldehydes during fermentation, thus eliminating undesirable wort-like off-flavours, and produced a diverse volatile aroma profile. Two strains, Trigonopsis cantarellii and Candida sojae, together with a commercial Saccharomycodes ludwigii reference strain, were selected for 30-L-scale wort fermentations based on aroma profile and similarity to a commercial reference beer during sensory analysis using projective mapping. Both strains performed comparably to the commercial reference, and the T. cantarellii strain in particular, produced low amounts of off-flavours and a significantly higher amount of the desirable monoterpene alcohol trans-geraniol. The strain was also sensitive to common food preservatives and antifungal compounds and unable to grow at 37°C, suggesting it is relatively easily controllable in the brewery, and appears to have low risk of pathogenicity. This study shows how the natural brewery microbiota can be exploited as a source of non-conventional yeasts for low-alcohol beer production.


Assuntos
Cerveja , Leveduras , Cerveja/microbiologia , Etanol , Fermentação , Aromatizantes
7.
Appl Microbiol Biotechnol ; 105(21-22): 8359-8376, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34643787

RESUMO

Yeast breeding is a powerful tool for developing and improving brewing yeast in a number of industry-relevant respects. However, breeding of industrial brewing yeast can be challenging, as strains are typically sterile and have large complex genomes. To facilitate breeding, we used the CRISPR/Cas9 system to generate double-stranded breaks in the MAT locus, generating transformants with a single specified mating type. The single mating type remained stable even after loss of the Cas9 plasmid, despite the strains being homothallic, and these strains could be readily mated with other brewing yeast transformants of opposite mating type. As a proof of concept, we applied this technology to generate yeast hybrids with an aim to increase ß-lyase activity for fermentation of beer with enhanced hop flavour. First, a genetic and phenotypic pre-screening of 38 strains was carried out in order to identify potential parent strains with high ß-lyase activity. Mating-competent transformants of eight parent strains were generated, and these were used to generate over 60 hybrids that were screened for ß-lyase activity. Selected phenolic off-flavour positive (POF +) hybrids were further sporulated to generate meiotic segregants with high ß-lyase activity, efficient wort fermentation, and lack of POF, all traits that are desirable in strains for the fermentation of modern hop-forward beers. Our study demonstrates the power of combining the CRISPR/Cas9 system with classic yeast breeding to facilitate development and diversification of brewing yeast. KEY POINTS: • CRISPR/Cas9-based mating-type switching was applied to industrial yeast strains. • Transformed strains could be readily mated to form intraspecific hybrids. • Hybrids exhibited heterosis for a number of brewing-relevant traits.


Assuntos
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Cerveja , Fermentação , Hibridização Genética , Saccharomyces cerevisiae/genética
8.
Microorganisms ; 9(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801403

RESUMO

The search for novel brewing strains from non-brewing environments represents an emerging trend to increase genetic and phenotypic diversities in brewing yeast culture collections. Another valuable tool is hybridization, where beneficial traits of individual strains are combined in a single organism. This has been used successfully to create de novo hybrids from parental brewing strains by mimicking natural Saccharomycescerevisiae ale × Saccharomyceseubayanus lager yeast hybrids. Here, we integrated both these approaches to create synthetic hybrids for lager fermentation using parental strains from niches other than beer. Using a phenotype-centered strategy, S. cerevisiae sourdough strains and the S. eubayanus × Saccharomyces uvarum strain NBRC1948 (also referred to as Saccharomyces bayanus) were chosen for their brewing aptitudes. We demonstrated that, in contrast to S. cerevisiae × S. uvarum crosses, hybridization yield was positively affected by time of exposure to starvation, but not by staggered mating. In laboratory-scale fermentation trials at 20 °C, one triple S. cerevisiae × S. eubayanus × S. uvarum hybrid showed a heterotic phenotype compared with the parents. In 2 L wort fermentation trials at 12 °C, this hybrid inherited the ability to consume efficiently maltotriose from NBRC1948 and, like the sourdough S. cerevisiae parent, produced appreciable levels of the positive aroma compounds 3-methylbutyl acetate (banana/pear), ethyl acetate (general fruit aroma) and ethyl hexanoate (green apple, aniseed, and cherry aroma). Based on these evidences, the phenotype-centered approach appears promising for designing de novo lager beer hybrids and may help to diversify aroma profiles in lager beer.

9.
Front Microbiol ; 12: 645271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868204

RESUMO

The successful application of Saccharomyces eubayanus and Saccharomyces paradoxus in brewery fermentations has highlighted the potential of wild Saccharomyes yeasts for brewing, and prompted investigation into the application potential of other members of the genus. Here, we evaluate, for the first time, the brewing potential of Saccharomyces jurei. The newly isolated strain from an ash tree (Fraxinus excelsior) in Upper Bavaria, Germany, close to the river Isar, was used to ferment a 12°P wort at 15°C. Performance was compared directly with that of a reference lager strain (TUM 34/70) and the S. eubayanus type strain. Both wild yeast rapidly depleted simple sugars and thereafter exhibited a lag phase before maltose utilization. This phase lasted for 4 and 10 days for S. eubayanus and S. jurei, respectively. S. eubayanus utilized fully the available maltose but, consistent with previous reports, did not use maltotriose. S. jurei, in contrast, utilized approximately 50% of the maltotriose available, making this the first report of maltotriose utilization in a wild Saccharomyces species. Maltotriose use was directly related to alcohol yield with 5.5, 4.9, and 4.5% ABV produced by Saccharomyces pastorianus, S. jurei, and S. eubayanus. Beers also differed with respect to aroma volatiles, with a high level (0.4 mg/L) of the apple/aniseed aroma ethyl hexanoate in S. jurei beers, while S. eubayanus beers had a high level of phenylethanol (100 mg/L). A trained panel rated all beers as being of high quality, but noted clear differences. A phenolic spice/clove note was prominent in S. jurei beer. This was less pronounced in the S. eubayanus beers, despite analytical levels of 4-vinylguaiacol being similar. Tropical fruit notes were pronounced in S. jurei beers, possibly resulting from the high level of ethyl hexanoate. Herein, we present results from the first intentional application of S. jurei as a yeast for beer fermentation (at the time of submission) and compare its fermentation performance to other species of the genus. Results indicate considerable potential for S. jurei application in brewing, with clear advantages compared to other wild Saccharomyces species.

10.
Food Microbiol ; 94: 103629, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33279061

RESUMO

De novo sourdough cultures were here assessed for their potential as sources of yeast strains for low-alcohol beer brewing. NGS analysis revealed an abundance of ascomycete yeasts, with some influence of grain type on fungal community composition. Ten different ascomycete yeast species were isolated from different sourdough types (including wheat, rye, and barley) and seven of these were screened for a number of brewing-relevant phenotypes. All seven were maltose-negative and produced less than 1% (v/v) alcohol from a 12 °Plato wort in initial fermentation trials. Strains were further screened for their bioflavouring potential (production of volatile aromas and phenolic notes, reduction of wort aldehydes), stress tolerance (temperature extremes, osmotic stress and ethanol tolerance) and flocculence. Based on these criteria, two species (Kazachstania servazzii and Pichia fermentans) were selected for 10 L-scale fermentation trials and sensory analysis of beers. The latter species was considered particularly suitable for production of low-alcohol wheat beers due to its production of the spice/clove aroma 4-vinylguaiacol, while the former showed potential for lager-style beers due to its clean flavour profile and tolerance to low temperature conditions.


Assuntos
Álcoois/análise , Cerveja/microbiologia , Pão/microbiologia , Maltose/metabolismo , Pichia/metabolismo , Saccharomycetales/metabolismo , Álcoois/metabolismo , Cerveja/análise , Fermentação , Aromatizantes/análise , Aromatizantes/metabolismo , Hordeum/metabolismo , Hordeum/microbiologia , Odorantes , Secale/metabolismo , Secale/microbiologia , Triticum/metabolismo , Triticum/microbiologia
11.
Front Fungal Biol ; 2: 733655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744092

RESUMO

Yeasts in the lager brewing group are closely related and consequently do not exhibit significant genetic variability. Here, an artificial Saccharomyces cerevisiae × Saccharomyces eubayanus tetraploid interspecies hybrid was created by rare mating, and its ability to sporulate and produce viable gametes was exploited to generate phenotypic diversity. Four spore clones obtained from a single ascus were isolated, and their brewing-relevant phenotypes were assessed. These F1 spore clones were found to differ with respect to fermentation performance under lager brewing conditions (15°C, 15 °Plato), production of volatile aroma compounds, flocculation potential and temperature tolerance. One spore clone, selected for its rapid fermentation and acetate ester production was sporulated to produce an F2 generation, again comprised of four spore clones from a single ascus. Again, phenotypic diversity was introduced. In two of these F2 clones, the fermentation performance was maintained and acetate ester production was improved relative to the F1 parent and the original hybrid strain. Strains also performed well in comparison to a commercial lager yeast strain. Spore clones varied in ploidy and chromosome copy numbers, and faster wort fermentation was observed in strains with a higher ploidy. An F2 spore clone was also subjected to 10 consecutive wort fermentations, and single cells were isolated from the resulting yeast slurry. These isolates also exhibited variable fermentation performance and chromosome copy numbers, highlighting the instability of polyploid interspecific hybrids. These results demonstrate the value of this natural approach to increase the phenotypic diversity of lager brewing yeast strains.

12.
Front Microbiol ; 11: 764, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390994

RESUMO

With a growing interest in non-alcoholic and low alcohol beer (NABLAB), researchers are looking into non-conventional yeasts to harness their special metabolic traits for their production. One of the investigated species is Lachancea fermentati, which possesses the uncommon ability to produce significant amounts of lactic acid during alcoholic fermentation, resulting in the accumulation of lactic acid while exhibiting reduced ethanol production. In this study, four Lachancea fermentati strains isolated from individual kombucha cultures were investigated. Whole genome sequencing was performed, and the strains were characterized for important brewing characteristics (e.g., sugar utilization) and sensitivities toward stress factors. A screening in wort extract was performed to elucidate strain-dependent differences, followed by fermentation optimization to enhance lactic acid production. Finally, a low alcohol beer was produced at 60 L pilot-scale. The genomes of the kombucha isolates were diverse and could be separated into two phylogenetic groups, which were related to their geographical origin. Compared to a Saccharomyces cerevisiae brewers' yeast, the strains' sensitivities to alcohol and acidic conditions were low, while their sensitivities toward osmotic stress were higher. In the screening, lactic acid production showed significant, strain-dependent differences. Fermentation optimization by means of response surface methodology (RSM) revealed an increased lactic acid production at a low pitching rate, high fermentation temperature, and high extract content. It was shown that a high initial glucose concentration led to the highest lactic acid production (max. 18.0 mM). The data indicated that simultaneous lactic acid production and ethanol production occurred as long as glucose was present. When glucose was depleted and/or lactic acid concentrations were high, the production shifted toward the ethanol pathway as the sole pathway. A low alcohol beer (<1.3% ABV) was produced at 60 L pilot-scale by means of stopped fermentation. The beer exhibited a balanced ratio of sweetness from residual sugars and acidity from the lactic acid produced (13.6 mM). However, due to the stopped fermentation, high levels of diacetyl were present, which could necessitate further process intervention to reduce concentrations to acceptable levels.

13.
Appl Microbiol Biotechnol ; 104(9): 3745-3756, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32170387

RESUMO

Diastatic strains of Saccharomyces cerevisiae possess the unique ability to hydrolyze and ferment long-chain oligosaccharides like dextrin and starch. They have long been regarded as important spoilage microbes in beer, but recent studies have inspired a re-evaluation of the significance of the group. Rather than being merely wild-yeast contaminants, they are highly specialized, domesticated yeasts belonging to a major brewing yeast lineage. In fact, many diastatic strains have unknowingly been used as production strains for decades. These yeasts are used in the production of traditional beer styles, like saison, but also show potential for creation of new beers with novel chemical and physical properties. Herein, we review results of the most recent studies and provide a detailed account of the structure, regulation, and functional role of the glucoamylase-encoding STA1 gene in relation to brewing and other fermentation industries. The state of the art in detecting diastatic yeast in the brewery is also summarized. In summary, these latest results highlight that having diastatic S. cerevisiae in your brewery is not necessarily a bad thing. KEY POINTS: •Diastatic S. cerevisiae strains are important spoilage microbes in brewery fermentations. •These strains belong to the 'Beer 2' or 'Mosaic beer' brewing yeast lineage. •Diastatic strains have unknowingly been used as production strains in breweries. •The STA1-encoded glucoamylase enables efficient maltotriose use.


Assuntos
Amilases/genética , Amilases/metabolismo , Fermentação , Saccharomyces cerevisiae/enzimologia , Cerveja/microbiologia , Dextrinas/metabolismo , Saccharomyces cerevisiae/classificação , Amido/metabolismo
14.
Microb Biotechnol ; 13(4): 1012-1025, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32096913

RESUMO

The utilization of S. eubayanus has recently become a topic of interest due to the novel organoleptic properties imparted to beer. However, the utilization of S. eubayanus in brewing requires the comprehension of the mechanisms that underlie fermentative differences generated from its natural genetic variability. Here, we evaluated fermentation performance and volatile compound production in ten genetically distinct S. eubayanus strains in a brewing fermentative context. The evaluated strains showed a broad phenotypic spectrum, some of them exhibiting a high fermentation capacity and high levels of volatile esters and/or higher alcohols. Subsequently, we obtained molecular profiles by generating 'end-to-end' genome assemblies, as well as metabolome and transcriptome profiling of two Patagonian isolates exhibiting significant differences in beer aroma profiles. These strains showed clear differences in concentrations of intracellular metabolites, including amino acids, such as valine, leucine and isoleucine, likely impacting the production of 2-methylpropanol and 3-methylbutanol. These differences in the production of volatile compounds are attributed to gene expression variation, where the most profound differentiation is attributed to genes involved in assimilatory sulfate reduction, which in turn validates phenotypic differences in H2 S production. This study lays a solid foundation for future research to improve fermentation performance and select strains for new lager styles based on aroma and metabolic profiles.


Assuntos
Saccharomyces , Cerveja , Fermentação , Saccharomyces/genética
15.
Appl Microbiol Biotechnol ; 103(18): 7597-7615, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31346683

RESUMO

Diastatic strains of Saccharomyces cerevisiae are common contaminants in beer fermentations and are capable of producing an extracellular STA1-encoded glucoamylase. Recent studies have revealed variable diastatic ability in strains tested positive for STA1, and here, we elucidate genetic determinants behind this variation. We show that poorly diastatic strains have a 1162-bp deletion in the promoter of STA1. With CRISPR/Cas9-aided reverse engineering, we show that this deletion greatly decreases the ability to grow in beer and consume dextrin, and the expression of STA1. New PCR primers were designed for differentiation of highly and poorly diastatic strains based on the presence of the deletion in the STA1 promoter. In addition, using publically available whole genome sequence data, we show that the STA1 gene is prevalent among the 'Beer 2'/'Mosaic Beer' brewing strains. These strains utilize maltotriose efficiently, but the mechanisms for this have been unknown. By deleting STA1 from a number of highly diastatic strains, we show here that extracellular hydrolysis of maltotriose through STA1 appears to be the dominant mechanism enabling maltotriose use during wort fermentation in STA1+ strains. The formation and retention of STA1 seems to be an alternative evolutionary strategy for efficient utilization of sugars present in brewer's wort. The results of this study allow for the improved reliability of molecular detection methods for diastatic contaminants in beer and can be exploited for strain development where maltotriose use is desired.


Assuntos
Proteínas Fúngicas/genética , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Amido/metabolismo , Trissacarídeos/metabolismo , Cerveja/microbiologia , Sistemas CRISPR-Cas , Dextrinas/metabolismo , Fermentação , Reprodutibilidade dos Testes , Genética Reversa , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
16.
Yeast ; 36(6): 383-398, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30698853

RESUMO

The burgeoning interest in archaic, traditional, and novel beer styles has coincided with a growing appreciation of the role of yeasts in determining beer character as well as a better understanding of the ecology and biogeography of yeasts. Multiple studies in recent years have highlighted the potential of wild Saccharomyces and non-Saccharomyces yeasts for production of beers with novel flavour profiles and other desirable properties. Yeasts isolated from spontaneously fermented beers as well as from other food systems (wine, bread, and kombucha) have shown promise for brewing application, and there is evidence that such cross-system transfers have occurred naturally in the past. We review here the available literature pertaining to the use of nonconventional yeasts in brewing, with a focus on the origins of these yeasts, including methods of isolation. Practical aspects of utilizing nondomesticated yeasts are discussed, and modern methods to facilitate discovery of yeasts with brewing potential are highlighted.


Assuntos
Cerveja/microbiologia , Bioprospecção , Leveduras/isolamento & purificação , Leveduras/metabolismo , Cerveja/análise , Microbiologia Ambiental , Fermentação , Alimentos Fermentados/microbiologia , Aromatizantes/análise , Saccharomyces/isolamento & purificação , Saccharomyces/metabolismo
17.
Front Microbiol ; 9: 2253, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319573

RESUMO

An unknown interspecies Saccharomyces hybrid, "Muri," was recently isolated from a "kveik" culture, a traditional Norwegian farmhouse brewing yeast culture (Preiss et al., 2018). Here we used whole genome sequencing to reveal the strain as an allodiploid Saccharomyces cerevisiae × Saccharomyces uvarum hybrid. Phylogenetic analysis of its sub-genomes revealed that the S. cerevisiae and S. uvarum parent strains of Muri appear to be most closely related to English ale and Central European cider and wine strains, respectively. We then performed phenotypic analysis on a number of brewing-relevant traits in a range of S. cerevisiae, S. uvarum and hybrid strains closely related to the Muri hybrid. The Muri strain possesses a range of industrially desirable phenotypic properties, including broad temperature tolerance, good ethanol tolerance, and efficient carbohydrate use, therefore making it an interesting candidate for not only brewing applications, but potentially various other industrial fermentations, such as biofuel production and distilling. We identified the two S. cerevisiae and S. uvarum strains that were genetically and phenotypically most similar to the Muri hybrid, and then attempted to reconstruct the Muri hybrid by generating de novo interspecific hybrids between these two strains. The de novo hybrids were compared with the original Muri hybrid, and many appeared phenotypically more similar to Muri than either of the parent strains. This study introduces a novel approach to studying hybrid strains and strain development by combining genomic and phenotypic analysis to identify closely related parent strains for construction of de novo hybrids.

18.
J Ind Microbiol Biotechnol ; 45(12): 1103-1112, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30306366

RESUMO

Diacetyl contributes to the flavor profile of many fermented products. Its typical buttery flavor is considered as an off flavor in lager-style beers, and its removal has a major impact on time and energy expenditure in breweries. Here, we investigated the possibility of lowering beer diacetyl levels through evolutionary engineering of lager yeast for altered synthesis of α-acetolactate, the precursor of diacetyl. Cells were exposed repeatedly to a sub-lethal level of chlorsulfuron, which inhibits the acetohydroxy acid synthase responsible for α-acetolactate production. Initial screening of 7 adapted isolates showed a lower level of diacetyl during wort fermentation and no apparent negative influence on fermentation rate or alcohol yield. Pilot-scale fermentation was carried out with one isolate and results confirmed the positive effect of chlorsulfuron adaptation. Diacetyl levels were over 60% lower at the end of primary fermentation relative to the non-adapted lager yeast and no significant change in fermentation performance or volatile flavor profile was observed due to the adaptation. Whole-genome sequencing revealed a non-synonymous SNP in the ILV2 gene of the adapted isolate. This mutation is known to confer general tolerance to sulfonylurea compounds, and is the most likely cause of the improved tolerance. Adaptive laboratory evolution appears to be a natural, simple and cost-effective strategy for diacetyl control in brewing.


Assuntos
Cerveja/análise , Diacetil/metabolismo , Fermentação , Genoma Fúngico , Saccharomyces/genética , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Cerveja/microbiologia , Etanol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lactatos/metabolismo , Microrganismos Geneticamente Modificados , Mutação de Sentido Incorreto , Saccharomyces/metabolismo
19.
Front Microbiol ; 9: 2137, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258422

RESUMO

The widespread production of fermented food and beverages has resulted in the domestication of Saccharomyces cerevisiae yeasts specifically adapted to beer production. While there is evidence beer yeast domestication was accelerated by industrialization of beer, there also exists a farmhouse brewing culture in western Norway which has passed down yeasts referred to as kveik for generations. This practice has resulted in ale yeasts which are typically highly flocculant, phenolic off flavor negative (POF-), and exhibit a high rate of fermentation, similar to previously characterized lineages of domesticated yeast. Additionally, kveik yeasts are reportedly high-temperature tolerant, likely due to the traditional practice of pitching yeast into warm (>28°C) wort. Here, we characterize kveik yeasts from 9 different Norwegian sources via PCR fingerprinting, whole genome sequencing of selected strains, phenotypic screens, and lab-scale fermentations. Phylogenetic analysis suggests that kveik yeasts form a distinct group among beer yeasts. Additionally, we identify a novel POF- loss-of-function mutation, as well as SNPs and CNVs potentially relevant to the thermotolerance, high ethanol tolerance, and high fermentation rate phenotypes of kveik strains. We also identify domestication markers related to flocculation in kveik. Taken together, the results suggest that Norwegian kveik yeasts are a genetically distinct group of domesticated beer yeasts with properties highly relevant to the brewing sector.

20.
Yeast ; 35(1): 113-127, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28755430

RESUMO

The lager yeast hybrid (Saccharomyces cerevisiae × Saccharomyces eubayanus) possesses two key characteristics that are essential for lager brewing: efficient sugar utilization and cold tolerance. Here we explore the possibility that the lager yeast phenotype can be recreated by hybridizing S. cerevisiae ale yeast with a number of cold-tolerant Saccharomyces species including Saccharomyces arboricola, Saccharomyces eubayanus, Saccharomyces mikatae and Saccharomyces uvarum. Interspecies hybrids performed better than parental strains in lager brewing conditions (12°C and 12°P wort), with the S. mikatae hybrid performing as well as the S. eubayanus hybrid. Where the S. cerevisiae parent was capable of utilizing maltotriose, this trait was inherited by the hybrids. A greater production of higher alcohols and esters by the hybrids resulted in the production of more aromatic beers relative to the parents. Strong fermentation performance relative to the parents was dependent on ploidy, with polyploid hybrids (3n, 4n) performing better than diploid hybrids. All hybrids produced 4-vinyl guaiacol, a smoke/clove aroma generally considered an off flavour in lager beer. This characteristic could however be eliminated by isolating spore clones from a fertile hybrid of S. cerevisiae and S. mikatae. The results suggest that S. eubayanus is dispensable when constructing yeast hybrids that express the typical lager yeast phenotype. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.


Assuntos
Cerveja/microbiologia , Temperatura Baixa , Saccharomyces/genética , Saccharomyces/metabolismo , Fermentação , Hibridização Genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA