Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Toxicol ; 6: 1298231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817305

RESUMO

Our understanding of the environmental behavior, bioaccumulation and concentrations of chlorinated paraffins (CPs) and Dechloranes (Dec) in the Arctic environment is still limited, particularly in freshwater ecosystems. In this descriptive study, short chain (SCCPs) and medium chain (MCCPs) CPs, Dechlorane Plus (DP) and analogues, and polychlorinated biphenyls (PCBs) were measured in sediments, benthic organisms, three-spined stickleback (Gasterosteus aculeatus), Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta) in two Sub-Arctic lakes in Northern Norway. Takvannet (TA) is a remote lake, with no known local sources for organic contaminants, while Storvannet (ST) is situated in a populated area. SCCPs and MCCPs were detected in all sediment samples from ST with concentration of 42.26-115.29 ng/g dw and 66.18-136.69 ng/g dw for SCCPs and MCCPs, respectively. Only SCCPs were detected in TA sediments (0.4-5.28 ng/g dw). In biota samples, sticklebacks and benthic organisms showed the highest concentrations of CPs, while concentrations were low or below detection limits in both char and trout. The congener group patterns observed in both lakes showed SCCP profiles dominated by higher chlorinated congener groups while the MCCPs showed consistency in their profiles, with C14 being the most prevalent carbon chain length. Anti- and syn-DP isomers were detected in all sediment, benthic and stickleback samples with higher concentrations in ST than in TA. However, they were only present in a few char and trout samples from ST. Dec 601 and 604 were below detection limits in all samples in both lakes. Dec 603 was detected only in ST sediments, sticklebacks and 2 trout samples, while Dec 602 was the only DP analogue found in all samples from both lakes. While there were clear differences in sediment concentrations of DP and Dec 602 between ST and TA, differences between lakes decreased with increasing δ15N. This pattern was similar to the PCB behavior, suggesting the lake characteristics in ST are playing an important role in the lack of biomagnification of pollutants in this lake. Our results suggest that ST receives pollutants from local sources in addition to atmospheric transport.

2.
Environ Sci Process Impacts ; 25(12): 1986-2000, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37811766

RESUMO

There is concern over possible effects on ecosystems and humans from exposure to persistent organic pollutants (POPs) and chemicals with similar properties. The main objective of this study was to develop, evaluate, and apply the Nested Exposure Model (NEM) designed to simulate the link between global emissions and resulting ecosystem exposure while accounting for variation in time and space. NEM, using environmental and biological data, global emissions, and physicochemical properties as input, was used to estimate PCB-153 concentrations in seawater and biota of the Norwegian marine environment from 1930 to 2020. These concentrations were compared to measured concentrations in (i) seawater, (ii) an Arctic marine food web comprising zooplankton, fish and marine mammals, and (iii) Atlantic herring (Clupea harengus) and Atlantic cod (Gadus morhua) from large baseline studies and monitoring programs. NEM reproduced PCB-153 concentrations in seawater, the Arctic food web, and Norwegian fish within a factor of 0.1-31, 0.14-3.1, and 0.09-21, respectively. The model also successfully reproduced measured trophic magnification factors for PCB-153 at Svalbard as well as geographical variations in PCB-153 burden in Atlantic cod between the Skagerrak, North Sea, Norwegian Sea, and Barents Sea, but estimated a steeper decline in PCB-153 concentration in herring and cod during the last decades than observed. Using the evaluated model with various emission scenarios showed the important contribution of European and global primary emissions for the PCB-153 load in fish from Norwegian marine offshore areas.


Assuntos
Ecossistema , Bifenilos Policlorados , Animais , Humanos , Bifenilos Policlorados/análise , Cadeia Alimentar , Peixes , Monitoramento Ambiental , Mamíferos
3.
Chemosphere ; 255: 126967, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32408127

RESUMO

Active sampling methodology for atmospheric monitoring of cyclic volatile methylsiloxanes (cVMS) was improved to reduce sampling artifacts. A new sorbent, ABN Express (ABN), was evaluated for storage stability and measurement accuracy. Storage stability of cVMS on ABN showed less than 1% degradation of the individual 13C-labelled octamethylcyclotetrasiloxane (13C4-D4), decamethylcyclopentasiloxane (13C5-D5) and dodecamethylcyclohexasiloxane (13C6-D6) after 14 days storage at room temperature and at -20 °C whereas significant degradation was observed on ENV+ sorbent at room temperature (37-62 %) and -20 °C (9-16 %). 13C4-D4 formed on ENV+ spiked with 13C5-D5, and both 13C4-D4 and 13C5-D5 formed on ENV+ spiked with 13C6-D6. However, this was not observed on the ABN sorbent. Performance of ABN was compared to ENV+ through an 8-month Arctic sampling campaign at the Zeppelin Observatory (Ny Ålesund, Svalbard). Good agreement between ABN and ENV+ was observed for D4 in the spring/summer months. However, D5 and D6 was found to be consistently higher on the ABN sorbent during this time period with D6 showing the greatest deviation. During the winter months, larger deviations were observed between ABN and ENV+ sorbents with a factor of 4 times higher atmospheric concentrations of both D5 and D6 found on ABN; indicating sorbent related degradation on ENV+. Our findings show that the ABN sorbent provides greater stability and accuracy for atmospheric monitoring of cVMS. Implications of these improvements towards atmospheric fate processes will be discussed.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Siloxanas/análise , Regiões Árticas , Artefatos , Estações do Ano , Svalbard
4.
Environ Sci Technol ; 51(21): 12489-12497, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28980809

RESUMO

Cyclic volatile methylsiloxanes (cVMS) are used in personal care products and emitted to aquatic environments through wastewater effluents, and their bioaccumulation potential is debated. Here, a new bentho-pelagic version of the ACC-HUMAN model was evaluated for polychlorinated biphenyls (PCBs) and applied to cVMS in combination with measurements to explore their bioaccumulation behavior in a subarctic lake. Predictions agreed better with measured PCB concentrations in Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta) when the benthic link was included than in the pelagic-only model. Measured concentrations of decamethylcyclopentasiloxane (D5) were 60 ± 1.2 (Chironomidae larvae), 107 ± 4.5 (pea clams Pisidium sp.), 131 ± 105 (three-spined sticklebacks: Gasterosteus aculeatus), 41 ± 38 (char), and 9.9 ± 5.9 (trout) ng g-1 wet weight. Concentrations were lower for octamethylcyclotetrasiloxane (D4) and dodecamethylcyclohexasiloxane (D6), and none of the cVMS displayed trophic magnification. Predicted cVMS concentrations were lower than measured in benthos, but agreed well with measurements in fish. cVMS removal through ventilation was an important predicted loss mechanism for the benthic-feeding fish. Predictions were highly sensitive to the partition coefficient between organic carbon and water (KOC) and its temperature dependence, as this controlled bioavailability for benthos (the main source of cVMS for fish).


Assuntos
Cadeia Alimentar , Águas Residuárias , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Humanos , Lagos , Siloxanas , Truta
6.
Environ Sci Process Impacts ; 15(12): 2240-51, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24132165

RESUMO

Short chain chlorinated paraffins (SCCPs) raise concerns due to their potential for persistence, bioaccumulation, long-range transport and adverse effects. An understanding of their environmental fate remains limited, partly due to the complexity of the mixture. The purpose of this study was to evaluate whether a mechanistic, integrated, dynamic environmental fate and bioaccumulation multimedia model (CoZMoMAN) can reconcile what is known about environmental emissions and human exposure of SCCPs in the Nordic environment. Realistic SCCP emission scenarios, resolved by formula group, were estimated and used to predict the composition and concentrations of SCCPs in the environment and the human food chain. Emissions at the upper end of the estimated range resulted in predicted total concentrations that were often within a factor of 6 of observations. Similar model performance for a complex group of organic contaminants as for the well-known polychlorinated biphenyls strengthens the confidence in the CoZMoMAN model and implies a relatively good mechanistic understanding of the environmental fate of SCCPs. However, the degree of chlorination predicted for SCCPs in sediments, fish, and humans was higher than observed and poorly established environmental half-lives and biotransformation rate constants contributed to the uncertainties in the predicted composition and ∑SCCP concentrations. Improving prediction of the SCCP composition will also require better constrained estimates of the composition of SCCP emissions. There is, however, also large uncertainty and lack of coherence in the existing observations, and better model-measurement agreement will require improved analytical methods and more strategic sampling. More measurements of SCCP levels and compositions in samples from background regions are particularly important.


Assuntos
Clima Frio , Poluentes Ambientais/química , Hidrocarbonetos Clorados/química , Modelos Teóricos , Animais , Simulação por Computador , Monitoramento Ambiental , Humanos , Noruega
7.
Environ Sci Technol ; 47(9): 4463-70, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23527480

RESUMO

Because the atmosphere is key to understanding the environmental behavior of volatile methyl siloxanes (VMS), a variety of reliable air sampling methods are needed. The purpose of this study was to calibrate and evaluate an existing, polystyrene-divinylbenzene copolymeric resin-based passive air sampler (XAD-PAS) for VMS. Sixteen XAD-PAS were deployed for 7-98 days at a suburban site in Toronto, Canada, while the VMS concentration in air was monitored by an active sampling method. This calibration and a subsequent field test further allowed for investigation of the temporal and spatial variability of VMS in the region. Uptake in the XAD-PAS of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and three linear VMS was linear throughout the whole deployment period. Sampling rates were between 0.4 and 0.5 m(3)/day. The XAD-PAS measured ∑VMS concentrations ranged from nondetects in rural areas (n = 3), to 169 ± 49 ng/m(3) in the urban region (n = 21), to levels above 600 ng/m(3) at sewage treatment plants (n = 2). Levels and composition of VMS within the urban area were remarkably uniform in space. Levels, but not composition, were highly variable in time and weakly correlated with temperature, wind speed, and wind direction.


Assuntos
Ar/análise , Resinas de Troca Iônica , Poliestirenos/química , Siloxanas/química , Calibragem , Controle de Qualidade , Volatilização
8.
Environ Sci Technol ; 47(1): 502-9, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23194257

RESUMO

Cyclic volatile methyl siloxanes (cVMS) are present in technical applications and personal care products. They are predicted to undergo long-range atmospheric transport, but measurements of cVMS in remote areas remain scarce. An active air sampling method for decamethylcyclopentasiloxane (D5) was further evaluated to include hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), and dodecamethylcyclohexasiloxane (D6). Air samples were collected at the Zeppelin observatory in the remote Arctic (79° N, 12° E) with an average sampling time of 81 ± 23 h in late summer (August-October) and 25 ± 10 h in early winter (November-December) 2011. The average concentrations of D5 and D6 in late summer were 0.73 ± 0.31 and 0.23 ± 0.17 ng/m(3), respectively, and 2.94 ± 0.46 and 0.45 ± 0.18 ng/m(3) in early winter, respectively. Detection of D5 and D6 in the Arctic atmosphere confirms their long-range atmospheric transport. The D5 measurements agreed well with predictions from a Eulerian atmospheric chemistry-transport model, and seasonal variability was explained by the seasonality in the OH radical concentrations. These results extend our understanding of the atmospheric fate of D5 to high latitudes, but question the levels of D3 and D4 that have previously been measured at Zeppelin with passive air samplers.


Assuntos
Poluentes Atmosféricos/análise , Siloxanas/análise , Regiões Árticas , Monitoramento Ambiental , Estações do Ano , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA