Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
JCI Insight ; 8(17)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37681409

RESUMO

The identity and origin of the stem/progenitor cells for adult joint cartilage repair remain unknown, impeding therapeutic development. Simulating the common therapeutic modality for cartilage repair in humans, i.e., full-thickness microfracture joint surgery, we combined the mouse full-thickness injury model with lineage tracing and identified a distinct skeletal progenitor cell type enabling long-term (beyond 7 days after injury) articular cartilage repair in vivo. Deriving from a population with active Prg4 expression in adulthood while lacking aggrecan expression, these progenitors proliferate, differentiate to express aggrecan and type II collagen, and predominate in long-term articular cartilage wounds, where they represent the principal repair progenitors in situ under native repair conditions without cellular transplantation. They originate outside the adult bone marrow or superficial zone articular cartilage. These findings have implications for skeletal biology and regenerative medicine for joint injury repair.


Assuntos
Cartilagem Articular , Adulto , Humanos , Animais , Camundongos , Agrecanas , Colágeno Tipo II , Modelos Animais de Doenças , Células-Tronco , Proteoglicanas
2.
Cell Genom ; 3(5): 100299, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37228756

RESUMO

Alterations in the growth and maturation of chondrocytes can lead to variation in human height, including monogenic disorders of skeletal growth. We aimed to identify genes and pathways relevant to human growth by pairing human height genome-wide association studies (GWASs) with genome-wide knockout (KO) screens of growth-plate chondrocyte proliferation and maturation in vitro. We identified 145 genes that alter chondrocyte proliferation and maturation at early and/or late time points in culture, with 90% of genes validating in secondary screening. These genes are enriched in monogenic growth disorder genes and in KEGG pathways critical for skeletal growth and endochondral ossification. Further, common variants near these genes capture height heritability independent of genes computationally prioritized from GWASs. Our study emphasizes the value of functional studies in biologically relevant tissues as orthogonal datasets to refine likely causal genes from GWASs and implicates new genetic regulators of chondrocyte proliferation and maturation.

3.
J Clin Endocrinol Metab ; 108(1): 191-197, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36056816

RESUMO

CONTEXT: Fragility fractures increase risks for future fractures, morbidity, and mortality. Available pharmacotherapy for underlying osteoporosis is safe and effective but underused. OBJECTIVE: To improve pharmacotherapy rate representing secondary prevention of osteoporotic fractures. METHODS: This single-center, observational, follow-up study included patients with fragility fractures admitted to the Massachusetts General Hospital between February 2016 and December 2019. For patients admitted to the orthopedics service with fragility fracture, the Massachusetts General Hospital Fracture Liaison Service (FLS) was systematically consulted. Initial outpatient follow-up with FLS was established in conjunction with the orthopedic postoperative follow-up visit. Patients at risk for failing timely outpatient follow-up were administered zoledronic acid (ZA) during the index fracture hospitalization. The main outcome measures were percentage of patients with fragility fracture(s) started on pharmacotherapy for osteoporosis and average length of stay and 30-day readmission rate of patients treated with ZA. RESULTS: Compared with baseline (8-11%) and reference (5-20%) rates, integration of FLS to the orthopedics service, along with appropriate inpatient administration of ZA, increased the pharmacotherapy rate to 70% (412/589) among eligible patients with verified treatment status. Inpatient ZA administration neither affected the average length of stay nor 30-day readmission rate. Treatment status of 37.9% (471/1240) of the study patients remained unknown due to lack of or unknown follow-up. CONCLUSION: Integration of a FLS and orthopedics services along with inpatient ZA administration improved the osteoporosis pharmacotherapy rate among patients with fragility fracture(s) who often had obstacles for outpatient follow-up.


Assuntos
Conservadores da Densidade Óssea , Ortopedia , Osteoporose , Fraturas por Osteoporose , Humanos , Ácido Zoledrônico/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Pacientes Internados , Seguimentos , Fraturas por Osteoporose/prevenção & controle , Fraturas por Osteoporose/tratamento farmacológico , Osteoporose/complicações , Osteoporose/tratamento farmacológico , Prevenção Secundária
5.
Endocrinology ; 163(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35460406

RESUMO

Rodent models are commonly used to evaluate parathyroid hormone (PTH) and PTH-related protein (PTHrP) ligands and analogues for their pharmacologic activities and potential therapeutic utility toward diseases of bone and mineral ion metabolism. Divergence, however, in the amino acid sequences of rodent and human PTH receptors (rat and mouse PTH1Rs are 91% identical to the human PTH1R) can lead to differences in receptor-binding and signaling potencies for such ligands when assessed on rodent vs human PTH1Rs, as shown by cell-based assays in vitro. This introduces an element of uncertainty in the accuracy of rodent models for performing such preclinical evaluations. To overcome this potential uncertainty, we used a homologous recombination-based knockin (KI) approach to generate a mouse (in-host strain C57Bl/6N) in which complementary DNA encoding the human PTH1R replaces a segment (exon 4) of the murine PTH1R gene so that the human and not the mouse PTH1R protein is expressed. Expression is directed by the endogenous mouse promoter and hence occurs in all biologically relevant cells and tissues and at appropriate levels. The resulting homozygous hPTH1R-KI (humanized) mice were healthy over at least 10 generations and showed functional responses to injected PTH analog peptides that are consistent with a fully functional human PTH1R in target bone and kidney cells. The initial evaluation of these mice and their potential utility for predicting behavior of PTH analogues in humans is reported here.


Assuntos
Proteína Relacionada ao Hormônio Paratireóideo , Hormônio Paratireóideo , Receptor Tipo 1 de Hormônio Paratireóideo , Sequência de Aminoácidos , Animais , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hormônio Paratireóideo/genética , Hormônio Paratireóideo/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Ratos , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptores de Hormônios Paratireóideos/genética , Receptores de Hormônios Paratireóideos/metabolismo , Transdução de Sinais
6.
Front Neurol ; 13: 855157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370900

RESUMO

Patients with fibrous dysplasia (FD) often present with craniofacial lesions that affect the trigeminal nerve system. Debilitating pain, headache, and migraine are frequently experienced by FD patients with poor prognosis, while some individuals with similar bone lesions are asymptomatic. The clinical and biological factors that contribute to the etiopathogenesis of pain in craniofacial FD are largely unknown. We present two adult females with comparable craniofacial FD lesion size and location, as measured by 18F-sodium fluoride positron emission tomography/computed tomography (PET/CT), yet their respective pain phenotypes differed significantly. Over 4 weeks, the average pain reported by Patient A was 0.4/0-10 scale. Patient B reported average pain of 7.8/0-10 scale distributed across the entire skull and left facial region. Patient B did not experience pain relief from analgesics or more aggressive treatments (denosumab). In both patients, evaluation of trigeminal nerve divisions (V1, V2, and V3) with CT and magnetic resonance imaging (MRI) revealed nerve compression and displacement with more involvement of the left trigeminal branches relative to the right. First-time employment of diffusion MRI and tractography suggested reduced apparent fiber density within the cisternal segment of the trigeminal nerve, particularly for Patient B and in the left hemisphere. These cases highlight heterogeneous clinical presentation and neurobiological properties in craniofacial FD and also, the disconnect between peripheral pathology and pain severity. We hypothesize that a detailed phenotypic characterization of patients that incorporates an advanced imaging approach probing the trigeminal system may provide enhanced insights into the variable experiences with pain in craniofacial FD.

7.
Nat Commun ; 12(1): 6271, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725346

RESUMO

Some osteoblasts embed within bone matrix, change shape, and become dendrite-bearing osteocytes. The circuitry that drives dendrite formation during "osteocytogenesis" is poorly understood. Here we show that deletion of Sp7 in osteoblasts and osteocytes causes defects in osteocyte dendrites. Profiling of Sp7 target genes and binding sites reveals unexpected repurposing of this transcription factor to drive dendrite formation. Osteocrin is a Sp7 target gene that promotes osteocyte dendrite formation and rescues defects in Sp7-deficient mice. Single-cell RNA-sequencing demonstrates defects in osteocyte maturation in the absence of Sp7. Sp7-dependent osteocyte gene networks are associated with human skeletal diseases. Moreover, humans with a SP7R316C mutation show defective osteocyte morphology. Sp7-dependent genes that mark osteocytes are enriched in neurons, highlighting shared features between osteocytic and neuronal connectivity. These findings reveal a role for Sp7 and its target gene Osteocrin in osteocytogenesis, revealing that pathways that control osteocyte development influence human bone diseases.


Assuntos
Doenças Ósseas/metabolismo , Dendritos/metabolismo , Proteínas Musculares/metabolismo , Osteócitos/metabolismo , Fator de Transcrição Sp7/metabolismo , Fatores de Transcrição/metabolismo , Adolescente , Animais , Doenças Ósseas/genética , Doenças Ósseas/fisiopatologia , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Musculares/genética , Mutação , Fator de Transcrição Sp7/genética , Fatores de Transcrição/genética
8.
J Bone Miner Res ; 36(12): 2300-2308, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34346115

RESUMO

Human adult height reflects the outcome of childhood skeletal growth. Growth plate (epiphyseal) chondrocytes are key determinants of height. As epiphyseal chondrocytes mature and proliferate, they pass through three developmental stages, which are organized into three distinct layers in the growth plate: (i) resting (round), (ii) proliferative (flat), and (iii) hypertrophic. Recent genomewide association studies (GWASs) of human height identified numerous associated loci, which are enriched for genes expressed in growth plate chondrocytes. However, it remains unclear which specific genes expressed in which layers of the growth plate regulate skeletal growth and human height. To connect the genetics of height and growth plate biology, we analyzed GWAS data through the lens of gene expression in the three dissected layers of murine newborn tibial growth plate. For each gene, we derived a specificity score for each growth plate layer and regressed these scores against gene-level p values from recent height GWAS data. We found that specificity for expression in the round cell layer, which contains chondrocytes early in maturation, is significantly associated with height GWAS p values (p = 8.5 × 10-9 ); this association remains after conditioning on specificity for the other cell layers. The association also remains after conditioning on membership in an "Online Mendelian Inheritance in Man (OMIM) gene set" (genes known to cause monogenic skeletal growth disorders, p < 9.7 × 10-6 ). We replicated the association in RNA-sequencing (RNA-seq) data from maturing chondrocytes sampled at early and late time points during differentiation in vitro: we found that expression early in differentiation is significantly associated with p values from height GWASs (p = 6.1 × 10-10 ) and that this association remains after conditioning on expression at 10 days in culture and on the OMIM gene set (p < 0.006). These findings newly implicate genes highlighted by GWASs of height and specifically expressed in the round cell layer as being potentially important regulators of skeletal biology. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Estudo de Associação Genômica Ampla , Lâmina de Crescimento , Animais , Estatura/genética , Diferenciação Celular/genética , Condrócitos , Humanos , Camundongos
9.
Elife ; 102021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34309509

RESUMO

Chondrocytes in the resting zone of the postnatal growth plate are characterized by slow cell cycle progression, and encompass a population of parathyroid hormone-related protein (PTHrP)-expressing skeletal stem cells that contribute to the formation of columnar chondrocytes. However, how these chondrocytes are maintained in the resting zone remains undefined. We undertook a genetic pulse-chase approach to isolate slow cycling, label-retaining chondrocytes (LRCs) using a chondrocyte-specific doxycycline-controllable Tet-Off system regulating expression of histone 2B-linked GFP. Comparative RNA-seq analysis identified significant enrichment of inhibitors and activators for Wnt signaling in LRCs and non-LRCs, respectively. Activation of Wnt/ß-catenin signaling in PTHrP+ resting chondrocytes using Pthlh-creER and Apc-floxed allele impaired their ability to form columnar chondrocytes. Therefore, slow-cycling chondrocytes are maintained in a Wnt-inhibitory environment within the resting zone, unraveling a novel mechanism regulating maintenance and differentiation of PTHrP+ skeletal stem cells of the postnatal growth plate.


Assuntos
Condrócitos/citologia , Lâmina de Crescimento/citologia , Células-Tronco/citologia , Via de Sinalização Wnt/fisiologia , Animais , Diferenciação Celular , Condrócitos/metabolismo , Lâmina de Crescimento/metabolismo , Camundongos , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Células-Tronco/metabolismo
10.
Elife ; 102021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34160349

RESUMO

Bone formation and resorption are typically coupled, such that the efficacy of anabolic osteoporosis treatments may be limited by bone destruction. The multi-kinase inhibitor YKL-05-099 potently inhibits salt inducible kinases (SIKs) and may represent a promising new class of bone anabolic agents. Here, we report that YKL-05-099 increases bone formation in hypogonadal female mice without increasing bone resorption. Postnatal mice with inducible, global deletion of SIK2 and SIK3 show increased bone mass, increased bone formation, and, distinct from the effects of YKL-05-099, increased bone resorption. No cell-intrinsic role of SIKs in osteoclasts was noted. In addition to blocking SIKs, YKL-05-099 also binds and inhibits CSF1R, the receptor for the osteoclastogenic cytokine M-CSF. Modeling reveals that YKL-05-099 binds to SIK2 and CSF1R in a similar manner. Dual targeting of SIK2/3 and CSF1R induces bone formation without concomitantly increasing bone resorption and thereby may overcome limitations of most current anabolic osteoporosis therapies.


Assuntos
Reabsorção Óssea/genética , Osteogênese/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Animais , Feminino , Masculino , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Distribuição Aleatória , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo
11.
Bone Res ; 9(1): 6, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33500396

RESUMO

The maturation and function of osteoblasts (OBs) rely heavily on the reversible phosphorylation of signaling proteins. To date, most of the work in OBs has focused on phosphorylation by tyrosyl kinases, but little has been revealed about dephosphorylation by protein tyrosine phosphatases (PTPases). SHP2 (encoded by PTPN11) is a ubiquitously expressed PTPase. PTPN11 mutations are associated with both bone and cartilage manifestations in patients with Noonan syndrome (NS) and metachondromatosis (MC), although the underlying mechanisms remain elusive. Here, we report that SHP2 deletion in bone gamma-carboxyglutamate protein-expressing (Bglap+) bone cells leads to massive osteopenia in both trabecular and cortical bones due to the failure of bone cell maturation and enhanced osteoclast activity, and its deletion in Bglap+ chondrocytes results in the onset of enchondroma and osteochondroma in aged mice with increased tubular bone length. Mechanistically, SHP2 was found to be required for osteoblastic differentiation by promoting RUNX2/OSTERIX signaling and for the suppression of osteoclastogenesis by inhibiting STAT3-mediated RANKL production by osteoblasts and osteocytes. These findings are likely to explain the compromised skeletal system in NS and MC patients and to inform the development of novel therapeutics to combat skeletal disorders.

12.
J Bone Miner Res ; 36(4): 757-767, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33400836

RESUMO

Blocking the Wnt inhibitor, sclerostin, increases the rate of bone formation in rodents and in humans. On a cellular level, the antibody against sclerostin acts by increasing osteoblast numbers partly by activating the quiescent bone-lining cells in vivo. No evidence currently exists, to determine whether blocking sclerostin affects early cells of the osteoblast lineage. Here we use a lineage-tracing strategy that uses a tamoxifen-dependent cre recombinase, driven by the Sox9 promoter to mark early cells of the osteoblast lineage. We show that, when adult mice are treated with the rat-13C7, an antibody that blocks sclerostin action in rodents, it increases the numbers of osteoblast precursors and their differentiation into mature osteoblasts in vivo. We also show that rat-13C7 administration suppresses adipogenesis by suppressing the differentiation of Sox9creER+ skeletal precursors into bone marrow adipocytes in vivo. Using floxed alleles of the CTNNB1 gene encoding ß-catenin, we show that these precursor cells express the canonical Wnt signaling mediator, ß-catenin, and that the actions of the rat-13C7 antibody to increase the number of early precursors is dependent on direct stimulation of Wnt signaling. The increase in osteoblast precursors and their progeny after the administration of the antibody leads to a robust suppression of apoptosis without affecting the rate of their proliferation. Thus, neutralizing the Wnt-inhibitor sclerostin increases the numbers of early cells of the osteoblast lineage osteoblasts and suppresses their differentiation into adipocytes in vivo. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osteoblastos , Osteócitos , Adipogenia , Animais , Camundongos , Osteoblastos/metabolismo , Osteócitos/metabolismo , Osteogênese , Ratos , Via de Sinalização Wnt , beta Catenina/metabolismo
13.
Methods Mol Biol ; 2230: 3-16, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33197005

RESUMO

Development of cartilage and bone, the core components of the mouse skeletal system, depends on coordinated proliferation and differentiation of skeletogenic cells, including chondrocytes and osteoblasts. These cells differentiate from common progenitor cells originating in the mesoderm and neural crest. Multiple signaling pathways and transcription factors tightly regulate differentiation and proliferation of skeletal cells. In this chapter, we overview the process of mouse skeletal development and discuss major regulators of skeletal cells at each developmental stage.


Assuntos
Desenvolvimento Ósseo/genética , Mesoderma/crescimento & desenvolvimento , Osteogênese/genética , Células-Tronco/citologia , Animais , Cartilagem/crescimento & desenvolvimento , Diferenciação Celular/genética , Condrócitos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Crista Neural/crescimento & desenvolvimento , Osteoblastos/metabolismo , Transdução de Sinais/genética
14.
Bone ; 142: 115709, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148508

RESUMO

Hypertrophy of chondrocytes is a crucial step in the endochondral bone formation process that drives bone lengthening and the transition to endochondral bone formation. Both Parathyroid hormone-related protein (PTHrP) and Histone deacetylase 4 (HDAC4) inhibit chondrocyte hypertrophy. Use of multiple mouse genetics models reveals how PTHrP and HDAC4 participate in a pathway that regulates chondrocyte hypertrophy. PTHrP/cAMP/protein kinase A (PKA) signaling pathway phosphorylates the PKA-target sites on salt-inducible kinase 3 (Sik3), which leads to inhibition of Sik3 kinase activity. Inhibition of Sik3 kinase activity decreases phosphorylation of HDAC4 by Sik3 at binding sites for 14-3-3; lower levels of HDAC4 phosphorylation then allow HDAC4 nuclear translocation. In the nucleus, the transcription factor, Myocyte Enhancer Factor 2 (Mef2), activates Runt-related transcription factor 2 (Runx2), and together these two transcription factors drive the hypertrophic process. HDAC4 binds both Mef2 and Runx2 and blocks their activities. There are genetic redundancies in this pathway. Sik1 and Sik2 also mediate PTHrP/cAMP/PKA signaling when Sik3 activity is low. HDAC5 also mediates PTHrP signaling when HDAC4 expression is low. Thus, PTHrP triggers a kinase cascade that leads to inhibition of the key transcription factors (Mef2 and Runx2) that promote chondrocyte hypertrophy.


Assuntos
Lâmina de Crescimento , Proteína Relacionada ao Hormônio Paratireóideo , Animais , Condrócitos , Histona Desacetilases , Hipertrofia , Camundongos , Proteínas Serina-Treonina Quinases
15.
Elife ; 92020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33063669

RESUMO

Growth plate and articular cartilage constitute a single anatomical entity early in development but later separate into two distinct structures by the secondary ossification center (SOC). The reason for such separation remains unknown. We found that evolutionarily SOC appears in animals conquering the land - amniotes. Analysis of the ossification pattern in mammals with specialized extremities (whales, bats, jerboa) revealed that SOC development correlates with the extent of mechanical loads. Mathematical modeling revealed that SOC reduces mechanical stress within the growth plate. Functional experiments revealed the high vulnerability of hypertrophic chondrocytes to mechanical stress and showed that SOC protects these cells from apoptosis caused by extensive loading. Atomic force microscopy showed that hypertrophic chondrocytes are the least mechanically stiff cells within the growth plate. Altogether, these findings suggest that SOC has evolved to protect the hypertrophic chondrocytes from the high mechanical stress encountered in the terrestrial environment.


Assuntos
Diferenciação Celular , Proliferação de Células , Condrócitos/metabolismo , Lâmina de Crescimento/crescimento & desenvolvimento , Osteogênese , Animais , Fenômenos Biomecânicos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Estresse Mecânico
16.
Nat Commun ; 11(1): 3282, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612176

RESUMO

Osteocytes, cells ensconced within mineralized bone matrix, are the primary skeletal mechanosensors. Osteocytes sense mechanical cues by changes in fluid flow shear stress (FFSS) across their dendritic projections. Loading-induced reductions of osteocytic Sclerostin (encoded by Sost) expression stimulates new bone formation. However, the molecular steps linking mechanotransduction and Sost suppression remain unknown. Here, we report that class IIa histone deacetylases (HDAC4 and HDAC5) are required for loading-induced Sost suppression and bone formation. FFSS signaling drives class IIa HDAC nuclear translocation through a signaling pathway involving direct HDAC5 tyrosine 642 phosphorylation by focal adhesion kinase (FAK), a HDAC5 post-translational modification that controls its subcellular localization. Osteocyte cell adhesion supports FAK tyrosine phosphorylation, and FFSS triggers FAK dephosphorylation. Pharmacologic FAK catalytic inhibition reduces Sost mRNA expression in vitro and in vivo. These studies demonstrate a role for HDAC5 as a transducer of matrix-derived cues to regulate cell type-specific gene expression.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/genética , Histona Desacetilases/genética , Mecanotransdução Celular/genética , Osteócitos/metabolismo , Transdução de Sinais/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Perfilação da Expressão Gênica/métodos , Histona Desacetilases/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese/genética , Fosforilação
17.
Circ Res ; 126(10): 1363-1378, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32160132

RESUMO

RATIONALE: The PTH1R (PTH [parathyroid hormone]/PTHrP [PTH-related protein] receptor) is expressed in vascular smooth muscle (VSM) and increased VSM PTH1R signaling mitigates diet-induced arteriosclerosis in LDLR-/- mice. OBJECTIVE: To study the impact of VSM PTH1R deficiency, we generated mice SM22-Cre:PTH1R(fl/fl);LDLR-/- mice (PTH1R-VKO) and Cre-negative controls. METHODS AND RESULTS: Immunofluorescence and Western blot confirmed PTH1R expression in arterial VSM that was reduced by Cre-mediated knockout. PTH1R-VKO cohorts exhibited increased aortic collagen accumulation in vivo, and VSM cultures from PTH1R-VKO mice elaborated more collagen (2.5-fold; P=0.01) with elevated Col3a1 and Col1a1 expression. To better understand these profibrotic responses, we performed mass spectrometry on nuclear proteins extracted from Cre-negative controls and PTH1R-VKO VSM. PTH1R deficiency reduced Gata6 but upregulated the MADS (MCM1, Agamous, Deficiens, and Srf DNA-binding domain)-box transcriptional co-regulator, Mkl-1 (megakaryoblastic leukemia [translocation] 1). Co-transfection assays (Col3a1 promoter-luciferase reporter) confirmed PTH1R-mediated inhibition and Mkl-1-mediated activation of Col3a1 transcription. Regulation mapped to a conserved hybrid CT(A/T)6GG MADS-box cognate in the Col3a1 promoter. Mutations of C/G in this motif markedly reduced Col3a1 transcriptional regulation by PTH1R and Mkl-1. Upregulation of Col3a1 and Col1a1 in PTH1R-VKO VSM was inhibited by small interfering RNA targeting Mkl1 and by treatment with the Mkl-1 antagonist CCG1423 or the Rock (Rho-associated coiled-coil containing protein kinase)-2 inhibitor KD025. Chromatin precipitation demonstrated that VSM PTH1R deficiency increased Mkl-1 binding to Col3a1 and Col1a1, but not TNF, promoters. Proteomic studies of plasma extracellular vesicles and VSM from PTH1R-VKO mice identified C1r (complement component 1, r) and C1s (complement component 1, s), complement proteins involved in vascular collagen metabolism, as potential biomarkers. VSM C1r protein and C1r message were increased with PTH1R deficiency, mediated by Mkl-1-dependent transcription and inhibited by CCG1423 or KD025. CONCLUSIONS: PTH1R signaling restricts collagen production in the VSM lineage, in part, via Mkl-1 regulatory circuits that control collagen gene transcription. Strategies that maintain homeostatic VSM PTH1R signaling, as reflected in extracellular vesicle biomarkers of VSM PTH1R/Mkl-1 action, may help mitigate arteriosclerosis and vascular fibrosis.


Assuntos
Aterosclerose/metabolismo , Colágeno Tipo I/metabolismo , Diabetes Mellitus/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Hormônio Paratireóideo/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Transativadores/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Fibrose , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Ratos , Receptor Tipo 1 de Hormônio Paratireóideo/deficiência , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptores de LDL/deficiência , Receptores de LDL/genética , Transdução de Sinais , Transativadores/genética , Transcrição Gênica , Remodelação Vascular
18.
J Clin Invest ; 129(12): 5187-5203, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31430259

RESUMO

The parathyroid hormone 1 receptor (PTH1R) mediates the biologic actions of parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP). Here, we showed that salt-inducible kinases (SIKs) are key kinases that control the skeletal actions downstream of PTH1R and that this GPCR, when activated, inhibited cellular SIK activity. Sik gene deletion led to phenotypic changes that were remarkably similar to models of increased PTH1R signaling. In growth plate chondrocytes, PTHrP inhibited SIK3, and ablation of this kinase in proliferating chondrocytes rescued perinatal lethality of PTHrP-null mice. Combined deletion of Sik2 and Sik3 in osteoblasts and osteocytes led to a dramatic increase in bone mass that closely resembled the skeletal and molecular phenotypes observed when these bone cells express a constitutively active PTH1R that causes Jansen's metaphyseal chondrodysplasia. Finally, genetic evidence demonstrated that class IIa histone deacetylases were key PTH1R-regulated SIK substrates in both chondrocytes and osteocytes. Taken together, our findings establish that SIK inhibition is central to PTH1R action in bone development and remodeling. Furthermore, this work highlights the key role of cAMP-regulated SIKs downstream of GPCR action.


Assuntos
Desenvolvimento Ósseo , Remodelação Óssea , Hormônio Paratireóideo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Animais , Animais Recém-Nascidos , Proliferação de Células , Condrócitos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Deleção de Genes , Hipertrofia , Masculino , Camundongos , Camundongos Knockout , Mutação , Osteoblastos/metabolismo , Osteócitos/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Transcriptoma
19.
Curr Top Dev Biol ; 133: 1-24, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30902249

RESUMO

Accumulating evidence supports the idea that stem and progenitor cells play important roles in skeletal development. Over the last decade, the definition of skeletal stem and progenitor cells has evolved from cells simply defined by their in vitro behaviors to cells fully defined by a combination of sophisticated approaches, including serial transplantation assays and in vivo lineage-tracing experiments. These approaches have led to better identification of the characteristics of skeletal stem cells residing in multiple sites, including the perichondrium of the fetal bone, the resting zone of the postnatal growth plate, the bone marrow space and the periosteum in adulthood. These diverse groups of skeletal stem cells appear to closely collaborate and achieve a number of important biological functions of bones, including not only bone development and growth, but also bone maintenance and repair. Although these are important findings, we are only beginning to understand the diversity and the nature of skeletal stem and progenitor cells, and how they actually behave in vivo.


Assuntos
Desenvolvimento Ósseo , Células-Tronco/citologia , Animais , Linhagem da Célula , Ensaio de Unidades Formadoras de Colônias , Lâmina de Crescimento/embriologia , Humanos , Osteogênese , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA