RESUMO
Neuronal circuits are hallmarks of complex decision-making processes in the animal world. How animals without neurons process information and respond to environmental cues promises a new window into studying precursors of neuronal control and origin of the nervous system as we know it today. Robust decision making in animals, such as in chemotaxis or thermotaxis, often requires internal symmetry breaking (such as anterior-posterior (AP) axis) provided naturally by a given body plan of an animal. Here we report the discovery of robust thermotaxis behaviour in Trichoplax adhaerens, an early-divergent, enigmatic animal with no anterior-posterior symmetry breaking (apolar) and no known neurons or muscles. We present a quantitative and robust behavioural response assay in Placozoa, which presents an apolar flat geometry. By exposing T. adhaerens to a thermal gradient under a long-term imaging set-up, we observe robust thermotaxis that occurs over timescale of hours, independent of any circadian rhythms. We quantify that T. adhaerens can detect thermal gradients of at least 0.1°C cm-1. Positive thermotaxis is observed for a range of baseline temperatures from 17°C to 22.5°C, and distributions of momentary speeds for both thermotaxis and control conditions are well described by single exponential fits. Interestingly, the organism does not maintain a fixed orientation while performing thermotaxis. Using natural diversity in size of adult organisms (100 µm to a few millimetres), we find no apparent size-dependence in thermotaxis behaviour across an order of magnitude of organism size. Several transient receptor potential (TRP) family homologues have been previously reported to be conserved in metazoans, including in T. adhaerens. We discover naringenin, a known TRPM3 antagonist, inhibits thermotaxis in T. adhaerens. The discovery of robust thermotaxis in T. adhaerens provides a tractable handle to interrogate information processing in a brainless animal. Understanding how divergent marine animals process thermal cues is also critical due to rapid temperature rise in our oceans.
Assuntos
Neurônios , Resposta Táctica , Animais , Quimiotaxia , Ritmo Circadiano , CogniçãoRESUMO
Here we adapt and evaluate a full-face snorkel mask for use as personal protective equipment (PPE) for health care workers, who lack appropriate alternatives during the COVID-19 crisis in the spring of 2020. The design (referred to as Pneumask) consists of a custom snorkel-specific adapter that couples the snorkel-port of the mask to a rated filter (either a medical-grade ventilator inline filter or an industrial filter). This design has been tested for the sealing capability of the mask, filter performance, CO2 buildup and clinical usability. These tests found the Pneumask capable of forming a seal that exceeds the standards required for half-face respirators or N95 respirators. Filter testing indicates a range of options with varying performance depending on the quality of filter selected, but with typical filter performance exceeding or comparable to the N95 standard. CO2 buildup was found to be roughly equivalent to levels found in half-face elastomeric respirators in literature. Clinical usability tests indicate sufficient visibility and, while speaking is somewhat muffled, this can be addressed via amplification (Bluetooth voice relay to cell phone speakers through an app) in noisy environments. We present guidance on the assembly, usage (donning and doffing) and decontamination protocols. The benefit of the Pneumask as PPE is that it is reusable for longer periods than typical disposable N95 respirators, as the snorkel mask can withstand rigorous decontamination protocols (that are standard to regular elastomeric respirators). With the dire worldwide shortage of PPE for medical personnel, our conclusions on the performance and efficacy of Pneumask as an N95-alternative technology are cautiously optimistic.