RESUMO
A search for boosted dark matter using 161.9 kt yr of Super-Kamiokande IV data is presented. We search for an excess of elastically scattered electrons above the atmospheric neutrino background, with a visible energy between 100 MeV and 1 TeV, pointing back to the Galactic center or the Sun. No such excess is observed. Limits on boosted dark matter event rates in multiple angular cones around the Galactic center and Sun are calculated. Limits are also calculated for a baseline model of boosted dark matter produced from cold dark matter annihilation or decay. This is the first experimental search for boosted dark matter from the Galactic center or the Sun interacting in a terrestrial detector.
RESUMO
Search results for nucleon decays pâe^{+}X, pâµ^{+}X, nâνγ (where X is an invisible, massless particle) as well as dinucleon decays npâe^{+}ν, npâµ^{+}ν, and npâτ^{+}ν in the Super-Kamiokande experiment are presented. Using single-ring data from an exposure of 273.4 kton·yr, a search for these decays yields a result consistent with no signal. Accordingly, lower limits on the partial lifetimes of τ_{pâe^{+}X}>7.9×10^{32} yr, τ_{pâµ^{+}X}>4.1×10^{32} yr, τ_{nâνγ}>5.5×10^{32} yr, τ_{npâe^{+}ν}>2.6×10^{32} yr, τ_{npâµ^{+}ν}>2.2×10^{32} yr, and τ_{npâτ^{+}ν}>2.9×10^{31} yr at a 90% confidence level are obtained. Some of these searches are novel.
RESUMO
Super-Kamiokande (SK) can search for weakly interacting massive particles (WIMPs) by detecting neutrinos produced from WIMP annihilations occurring inside the Sun. In this analysis, we include neutrino events with interaction vertices in the detector in addition to upward-going muons produced in the surrounding rock. Compared to the previous result, which used the upward-going muons only, the signal acceptances for light (few-GeV/c^{2}-200-GeV/c^{2}) WIMPs are significantly increased. We fit 3903 days of SK data to search for the contribution of neutrinos from WIMP annihilation in the Sun. We found no significant excess over expected atmospheric-neutrino background and the result is interpreted in terms of upper limits on WIMP-nucleon elastic scattering cross sections under different assumptions about the annihilation channel. We set the current best limits on the spin-dependent WIMP-proton cross section for WIMP masses below 200 GeV/c^{2} (at 10 GeV/c^{2}, 1.49×10^{-39} cm^{2} for χχâbb[over ¯] and 1.31×10^{-40} cm^{2} for χχâτ^{+}τ^{-} annihilation channels), also ruling out some fraction of WIMP candidates with spin-independent coupling in the few-GeV/c^{2} mass range.
RESUMO
We present the results of searches for nucleon decay via nâν[over ¯]π0 and pâν[over ¯]π+ using data from a combined 172.8 kt·yr exposure of Super-Kamiokande-I,-II, and-III. We set lower limits on the partial lifetime for each of these modes: τnâν[over ¯]π0>1.1×10(33) years and τpâν[over ¯]π+>3.9×10(32) years at a 90% confidence level.
RESUMO
The trilepton nucleon decay modes pâe+νν and pâµ+νν violate |Δ(B-L)| by two units. Using data from a 273.4 kt yr exposure of Super-Kamiokande a search for these decays yields a fit consistent with no signal. Accordingly, lower limits on the partial lifetimes of τpâe+νν>1.7×10(32) years and τpâµ+νν>2.2×10(32) years at a 90% confidence level are obtained. These limits can constrain Grand Unified Theories which allow for such processes.
RESUMO
A search for the dinucleon decay pp â K+ K+ has been performed using 91.6 kton·yr data from Super-Kamiokande-I. This decay provides a sensitive probe of the R-parity-violating parameter λ112''. A boosted decision tree analysis found no signal candidates in the data. The expected background was 0.28±0.19 atmospheric neutrino induced events and the estimated signal detection efficiency was 12.6%±3.2%. A lower limit of 1.7×10(32) years has been placed on the partial lifetime of the decay O16 â C14K+ K+ at 90% C.L. A corresponding upper limit of 7.8×10(-9) has been placed on the parameter λ112''.
RESUMO
We report an indication that the elastic scattering rate of solar B8 neutrinos with electrons in the Super-Kamiokande detector is larger when the neutrinos pass through Earth during nighttime. We determine the day-night asymmetry, defined as the difference of the average day rate and average night rate divided by the average of those two rates, to be [-3.2 ± 1.1(stat) ± 0.5(syst)]%, which deviates from zero by 2.7 σ. Since the elastic scattering process is mostly sensitive to electron-flavored solar neutrinos, a nonzero day-night asymmetry implies that the flavor oscillations of solar neutrinos are affected by the presence of matter within the neutrinos' flight path. Super-Kamiokande's day-night asymmetry is consistent with neutrino oscillations for 4 × 10(-5) eV(2) ≤ Δm 2(21) ≤ 7 × 10(-5) eV(2) and large mixing values of θ12, at the 68% C.L.
RESUMO
Super-Kamiokande atmospheric neutrino data were fit with an unbinned maximum likelihood method to search for the appearance of tau leptons resulting from the interactions of oscillation-generated tau neutrinos in the detector. Relative to the expectation of unity, the tau normalization is found to be 1.42 ± 0.35(stat)(-0.12)(+0.14)(syst) excluding the no-tau-appearance hypothesis, for which the normalization would be zero, at the 3.8σ level. We estimate that 180.1 ± 44.3(stat)(-15.2)(+17.8) (syst) tau leptons were produced in the 22.5 kton fiducial volume of the detector by tau neutrinos during the 2806 day running period. In future analyses, this large sample of selected tau events will allow the study of charged current tau neutrino interaction physics with oscillation produced tau neutrinos.
RESUMO
We present a search for differences in the oscillations of antineutrinos and neutrinos in the Super-Kamiokande-I, -II, and -III atmospheric neutrino sample. Under a two-flavor disappearance model with separate mixing parameters between neutrinos and antineutrinos, we find no evidence for a difference in oscillation parameters. Best-fit antineutrino mixing is found to be at (Δm2,sin2 2θ)=(2.0×10(-3) eV2, 1.0) and is consistent with the overall Super-K measurement.
RESUMO
We have searched for proton decays via p-->e;{+}pi;{0} and p-->micro;{+}pi;{0} using data from a 91.7 kt.yr exposure of Super-Kamiokande-I and a 49.2 kt.yr exposure of Super-Kamiokande-II. No candidate events were observed with expected backgrounds induced by atmospheric neutrinos of 0.3 events for each decay mode. From these results, we set lower limits on the partial lifetime of 8.2 x 10;{33} and 6.6 x 10;{33} years at 90% confidence level for p-->e;{+}pi;{0} and p-->micro;{+}pi;{0} modes, respectively.
RESUMO
A search for the appearance of tau neutrinos from nu(mu) <--> nu(tau) oscillations in the atmospheric neutrinos has been performed using 1489.2 days of atmospheric neutrino data from the Super-Kamiokande-I experiment. A best fit tau neutrino appearance signal of 138+/-48(stat)-32(+15)(syst) events is obtained with an expectation of 78+/-26(syst). The hypothesis of no tau neutrino appearance is disfavored by 2.4 sigma.
RESUMO
Muon neutrino disappearance probability as a function of neutrino flight length L over neutrino energy E was studied. A dip in the L/E distribution was observed in the data, as predicted from the sinusoidal flavor transition probability of neutrino oscillation. The observed L/E distribution constrained nu(micro)<-->nu(tau) neutrino oscillation parameters; 1.9x10(-3)
RESUMO
We present a search for electron neutrino appearance from accelerator-produced muon neutrinos in the K2K long-baseline neutrino experiment. One candidate event is found in the data corresponding to an exposure of 4.8 x 10(19) protons on target. The expected background in the absence of neutrino oscillations is estimated to be 2.4+/-0.6 events and is dominated by misidentification of events from neutral current pi(0) production. We exclude the nu(micro) to nu(e) oscillations at 90% C.L. for the effective mixing angle in the 2-flavor approximation of sin((2)2theta(microe)( approximately 1/2sin((2)2theta(13))>0.15 at Deltam(2)(microe)=2.8 x 10(-3) eV(2), the best-fit value of the nu(micro) disappearance analysis in K2K. The most stringent limit of sin((2)2theta(microe)<0.09 is obtained at Deltam(2)(microe)=6 x 10(-3) eV(2).
RESUMO
A search for a nonzero neutrino magnetic moment has been conducted using 1496 live days of solar neutrino data from Super-Kamiokande-I. Specifically, we searched for distortions to the energy spectrum of recoil electrons arising from magnetic scattering due to a nonzero neutrino magnetic moment. In the absence of a clear signal, we found micro(nu)=(3.6x10(-10))micro(B) at 90% C.L. by fitting to the Super-Kamiokande day-night spectra. The fitting took into account the effect of neutrino oscillation on the shapes of energy spectra. With additional information from other solar neutrino and KamLAND experiments constraining the oscillation region, a limit of micro(nu)=(1.1x10(-10))micro(B) at 90% C.L. was obtained.
RESUMO
We present the results of a search for low energy nu(e) from the Sun using 1496 days of data from Super-Kamiokande-I. We observe no significant excess of events and set an upper limit for the conversion probability to nu(e) of the 8B solar neutrino. This conversion limit is 0.8% (90% C.L.) of the standard solar model's neutrino flux for total energy=8-20 MeV. We also set a flux limit for monochromatic nu(e) for E(nu(e))=10-17 MeV.
RESUMO
A search for the relic neutrinos from all past core-collapse supernovae was conducted using 1496 days of data from the Super-Kamiokande detector. This analysis looked for electron-type antineutrinos that had produced a positron with an energy greater than 18 MeV. In the absence of a signal, 90% C.L. upper limits on the total flux were set for several theoretical models; these limits ranged from 20 to 130 macro nu(e) cm(-2) s(-1). Additionally, an upper bound of 1.2 macro nu(e) cm(-2) s(-1) was set for the supernova relic neutrino flux in the energy region E(nu)>19.3 MeV.
RESUMO
The K2K experiment observes indications of neutrino oscillation: a reduction of nu(mu) flux together with a distortion of the energy spectrum. Fifty-six beam neutrino events are observed in Super-Kamiokande (SK), 250 km from the neutrino production point, with an expectation of 80.1(+6.2)(-5.4). Twenty-nine one ring mu-like events are used to reconstruct the neutrino energy spectrum, which is better matched to the expected spectrum with neutrino oscillation than without. The probability that the observed flux at SK is explained by statistical fluctuation without neutrino oscillation is less than 1%.
RESUMO
Solar neutrino measurements from 1258 days of data from the Super-Kamiokande detector are presented. The measurements are based on recoil electrons in the energy range 5.0-20.0 MeV. The measured solar neutrino flux is 2.32+/-0.03(stat)+0.08-0.07(syst)x10(6) cm(-2) x s(-1), which is 45.1+/-0.5(stat)+1.6-1.4(syst)% of that predicted by the BP2000 SSM. The day vs night flux asymmetry (Phi(n)-Phi(d))/Phi(average) is 0.033+/-0.022(stat)+0.013-0.012(syst). The recoil electron energy spectrum is consistent with no spectral distortion. For the hep neutrino flux, we set a 90% C.L. upper limit of 40x10(3) cm(-2) x s(-1), which is 4.3 times the BP2000 SSM prediction.
RESUMO
We report the result of a search for neutrino oscillations using precise measurements of the recoil electron energy spectrum and zenith angle variations of the solar neutrino flux from 1258 days of neutrino-electron scattering data in Super-Kamiokande. The absence of significant zenith angle variation and spectrum distortion places strong constraints on neutrino mixing and mass difference in a flux-independent way. Using the Super-Kamiokande flux measurement in addition, two allowed regions at large mixing are found.
RESUMO
The previously published atmospheric neutrino data did not distinguish whether muon neutrinos were oscillating into tau neutrinos or sterile neutrinos, as both hypotheses fit the data. Using data recorded in 1100 live days of the Super-Kamiokande detector, we use three complementary data samples to study the difference in zenith angle distribution due to neutral currents and matter effects. We find no evidence favoring sterile neutrinos, and reject the hypothesis at the 99% confidence level. On the other hand, we find that oscillation between muon and tau neutrinos suffices to explain all the results in hand.