Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500584

RESUMO

The Suzuki coupling Knoevenagel condensation one-pot synthesis of boronic acids/esters, (hetero)aromatic bromo aldehydes and methylene active compounds is a highly practical consecutive three-component process to provide substance libraries with 60 donor-π-bridge-acceptor molecules, i.e., merocyanines in a broader sense, in moderate to excellent yield. As already seen with the naked eye, a broad variation of the optical properties becomes accessible using this practical synthetic tool. More systematically, correlation analyses upon plotting the optical band gaps against the first oxidation potentials of redox active systems of consanguineous series furnishes linear correlations and, by extension, two parameter plots (oxidation potential and emission maximum) planar correlations with the optical band gaps.

2.
BMC Plant Biol ; 21(1): 324, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225655

RESUMO

BACKGROUND: Growing large crop monocultures and heavily using pesticides enhances the evolution of pesticide-insensitive pests and pathogens. To reduce pesticide use in crop cultivation, the application of priming-active compounds (PrimACs) is a welcome alternative. PrimACs strengthen the plant immune system and could thus help to protect plants with lower amounts of pesticides. PrimACs can be identified, for example, by their capacity to enhance the respiratory activity of parsley cells in culture as determined by the oxygen transfer rate (OTR) using the respiration activity monitoring system (RAMOS) or its miniaturized version, µRAMOS. The latter was designed for with suspensions of bacteria and yeast cells in microtiter plates (MTPs). So far, RAMOS or µRAMOS have not been applied to adult plants or seedlings, which would overcome the limitation of (µ)RAMOS to plant suspension cell cultures. RESULTS: In this work, we introduce a modified µRAMOS for analysis of plant seedlings. The novel device allows illuminating the seedlings and records the respiratory activity in each well of a 48-well MTP. To validate the suitability of the setup for identifying novel PrimAC in Arabidopsis thaliana, seedlings were grown in MTP for seven days and treated with the known PrimAC salicylic acid (SA; positive control) and the PrimAC candidate methyl 1-(3,4-dihydroxyphenyl)-2-oxocyclopentane-1-carboxylate (Tyr020). Twenty-eight h after treatment, the seedlings were elicited with flg22, a 22-amino acid peptide of bacterial flagellin. Upon elicitation, the respiratory activity was monitored. The evaluation of the OTR course reveals Tyr020 as a likely PrimAC. The priming-inducing activity of Tyr020 was confirmed using molecular biological analyses in A. thaliana seedlings. CONCLUSION: We disclose the suitability of µRAMOS for identifying PrimACs in plant seedlings. The difference in OTR during a night period between primed and unprimed plants was distinguishable after elicitation with flg22. Thus, it has been shown that the µRAMOS device can be used for a reliable screening for PrimACs in plant seedlings.


Assuntos
Arabidopsis/efeitos da radiação , Luz , Plântula/fisiologia , Plântula/efeitos da radiação , Arabidopsis/crescimento & desenvolvimento , Respiração Celular/efeitos da radiação
3.
Chemistry ; 26(34): 7556-7562, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32104930

RESUMO

The enzyme tyrosinase contains a reactive side-on peroxo dicopper(II) center as catalytically active species in C-H oxygenation reactions. The tyrosinase activity of the isomeric bis(µ-oxo) dicopper(III) form has been discussed controversially. The synthesis of bis(µ-oxo) dicopper(III) species [Cu2 (µ-O)2 (L1)2 ](X)2 ([O1](X)2 , X=PF6 - , BF4 - , OTf- , ClO4 - ), stabilized by the new hybrid guanidine ligand 2-{2-((dimethylamino)methyl)phenyl}-1,1,3,3-tetramethylguanidine (L1), and its characterization by UV/Vis, Raman, and XAS spectroscopy, as well as cryo-UHR-ESI mass spectrometry, is described. We highlight selective oxygenation of a plethora of phenolic substrates mediated by [O1](PF6 )2 , which results in mono- and bicyclic quinones and provides an attractive strategy for designing new phenazines. The selectivity is predicted by using the Fukui function, which is hereby introduced into tyrosinase model chemistry. Our bioinspired catalysis harnesses molecular dioxygen for organic transformations and achieves a substrate diversity reaching far beyond the scope of the enzyme.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA