Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Clin Genet ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38715525

RESUMO

FGF12 related epilepsy presents with variable phenotypes. We report another patient with a duplication involving the FGF12 gene who presented similar to other published cases having normal early development and responded to phenytoin.

2.
Precis Clin Med ; 7(1): pbae007, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38634106

RESUMO

Background: The Inspiration4 (I4) mission, the first all-civilian orbital flight mission, investigated the physiological effects of short-duration spaceflight through a multi-omic approach. Despite advances, there remains much to learn about human adaptation to spaceflight's unique challenges, including microgravity, immune system perturbations, and radiation exposure. Methods: To provide a detailed genetics analysis of the mission, we collected dried blood spots pre-, during, and post-flight for DNA extraction. Telomere length was measured by quantitative PCR, while whole genome and cfDNA sequencing provided insight into genomic stability and immune adaptations. A robust bioinformatic pipeline was used for data analysis, including variant calling to assess mutational burden. Result: Telomere elongation occurred during spaceflight and shortened after return to Earth. Cell-free DNA analysis revealed increased immune cell signatures post-flight. No significant clonal hematopoiesis of indeterminate potential (CHIP) or whole-genome instability was observed. The long-term gene expression changes across immune cells suggested cellular adaptations to the space environment persisting months post-flight. Conclusion: Our findings provide valuable insights into the physiological consequences of short-duration spaceflight, with telomere dynamics and immune cell gene expression adapting to spaceflight and persisting after return to Earth. CHIP sequencing data will serve as a reference point for studying the early development of CHIP in astronauts, an understudied phenomenon as previous studies have focused on career astronauts. This study will serve as a reference point for future commercial and non-commercial spaceflight, low Earth orbit (LEO) missions, and deep-space exploration.

3.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38485690

RESUMO

MOTIVATION: The acquisition of somatic mutations in hematopoietic stem and progenitor stem cells with resultant clonal expansion, termed clonal hematopoiesis (CH), is associated with increased risk of hematologic malignancies and other adverse outcomes. CH is generally present at low allelic fractions, but clonal expansion and acquisition of additional mutations leads to hematologic cancers in a small proportion of individuals. With high depth and high sensitivity sequencing, CH can be detected in most adults and its clonal trajectory mapped over time. However, accurate CH variant calling is challenging due to the difficulty in distinguishing low frequency CH mutations from sequencing artifacts. The lack of well-validated bioinformatic pipelines for CH calling may contribute to lack of reproducibility in studies of CH. RESULTS: Here, we developed ArCH, an Artifact filtering Clonal Hematopoiesis variant calling pipeline for detecting single nucleotide variants and short insertions/deletions by combining the output of four variant calling tools and filtering based on variant characteristics and sequencing error rate estimation. ArCH is an end-to-end cloud-based pipeline optimized to accept a variety of inputs with customizable parameters adaptable to multiple sequencing technologies, research questions, and datasets. Using deep targeted sequencing data generated from six acute myeloid leukemia patient tumor: normal dilutions, 31 blood samples with orthogonal validation, and 26 blood samples with technical replicates, we show that ArCH improves the sensitivity and positive predictive value of CH variant detection at low allele frequencies compared to standard application of commonly used variant calling approaches. AVAILABILITY AND IMPLEMENTATION: The code for this workflow is available at: https://github.com/kbolton-lab/ArCH.


Assuntos
Hematopoiese Clonal , Neoplasias Hematológicas , Adulto , Humanos , Sequenciamento de Nucleotídeos em Larga Escala , Software , Reprodutibilidade dos Testes , Mutação , Hematopoese/genética
4.
Nat Biotechnol ; 42(1): 132-138, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37231263

RESUMO

We present avidity sequencing, a sequencing chemistry that separately optimizes the processes of stepping along a DNA template and that of identifying each nucleotide within the template. Nucleotide identification uses multivalent nucleotide ligands on dye-labeled cores to form polymerase-polymer-nucleotide complexes bound to clonal copies of DNA targets. These polymer-nucleotide substrates, termed avidites, decrease the required concentration of reporting nucleotides from micromolar to nanomolar and yield negligible dissociation rates. Avidity sequencing achieves high accuracy, with 96.2% and 85.4% of base calls having an average of one error per 1,000 and 10,000 base pairs, respectively. We show that the average error rate of avidity sequencing remained stable following a long homopolymer.


Assuntos
DNA , Nucleotídeos , Nucleotídeos/genética , Nucleotídeos/química , DNA/genética , DNA/química , Replicação do DNA , Pareamento de Bases , Polímeros
5.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38038370

RESUMO

Low-pass sequencing with genotype imputation has been adopted as a cost-effective method for genotyping. The most widely used method of short-read sequencing uses sequencing by synthesis (SBS). Here we perform a study of a novel sequencing technology-avidity sequencing. In this short note, we compare the performance of imputation from low-pass libraries sequenced on an Element AVITI system (which utilizes avidity sequencing) to those sequenced on an Illumina NovaSeq 6000 (which utilizes SBS) with an SP flow cell for the same set of biological samples across a range of genetic ancestries. We observed dramatically lower optical duplication rates in the data deriving from the AVITI system compared to the NovaSeq 6000, resulting in higher effective coverage given a fixed number of sequenced bases, and comparable imputation accuracy performance between sequencing chemistries across ancestries. This study demonstrates that avidity sequencing is a viable alternative to the standard SBS chemistries for applications involving low-pass sequencing plus imputation.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Genótipo , Estudo de Associação Genômica Ampla/métodos
6.
Res Sq ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37886447

RESUMO

Maintenance of astronaut health during spaceflight will require monitoring and potentially modulating their microbiomes, which play a role in some space-derived health disorders. However, documenting the response of microbiota to spaceflight has been difficult thus far due to mission constraints that lead to limited sampling. Here, we executed a six-month longitudinal study centered on a three-day flight to quantify the high-resolution microbiome response to spaceflight. Via paired metagenomics and metatranscriptomics alongside single immune profiling, we resolved a microbiome "architecture" of spaceflight characterized by time-dependent and taxonomically divergent microbiome alterations across 750 samples and ten body sites. We observed pan-phyletic viral activation and signs of persistent changes that, in the oral microbiome, yielded plaque-associated pathobionts with strong associations to immune cell gene expression. Further, we found enrichments of microbial genes associated with antibiotic production, toxin-antitoxin systems, and stress response enriched universally across the body sites. We also used strain-level tracking to measure the potential propagation of microbial species from the crew members to each other and the environment, identifying microbes that were prone to seed the capsule surface and move between the crew. Finally, we identified associations between microbiome and host immune cell shifts, proposing both a microbiome axis of immune changes during flight as well as the sources of some of those changes. In summary, these datasets and methods reveal connections between crew immunology, the microbiome, and their likely drivers and lay the groundwork for future microbiome studies of spaceflight.

7.
Genome Res ; 27(1): 157-164, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903644

RESUMO

Improvement of variant calling in next-generation sequence data requires a comprehensive, genome-wide catalog of high-confidence variants called in a set of genomes for use as a benchmark. We generated deep, whole-genome sequence data of 17 individuals in a three-generation pedigree and called variants in each genome using a range of currently available algorithms. We used haplotype transmission information to create a phased "Platinum" variant catalog of 4.7 million single-nucleotide variants (SNVs) plus 0.7 million small (1-50 bp) insertions and deletions (indels) that are consistent with the pattern of inheritance in the parents and 11 children of this pedigree. Platinum genotypes are highly concordant with the current catalog of the National Institute of Standards and Technology for both SNVs (>99.99%) and indels (99.92%) and add a validated truth catalog that has 26% more SNVs and 45% more indels. Analysis of 334,652 SNVs that were consistent between informatics pipelines yet inconsistent with haplotype transmission ("nonplatinum") revealed that the majority of these variants are de novo and cell-line mutations or reside within previously unidentified duplications and deletions. The reference materials from this study are a resource for objective assessment of the accuracy of variant calls throughout genomes.


Assuntos
Genoma Humano/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Bases de Dados Genéticas , Exoma/genética , Genótipo , Humanos , Mutação INDEL/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Software
8.
Bioinformatics ; 32(8): 1220-2, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26647377

RESUMO

UNLABELLED: : We describe Manta, a method to discover structural variants and indels from next generation sequencing data. Manta is optimized for rapid germline and somatic analysis, calling structural variants, medium-sized indels and large insertions on standard compute hardware in less than a tenth of the time that comparable methods require to identify only subsets of these variant types: for example NA12878 at 50× genomic coverage is analyzed in less than 20 min. Manta can discover and score variants based on supporting paired and split-read evidence, with scoring models optimized for germline analysis of diploid individuals and somatic analysis of tumor-normal sample pairs. Call quality is similar to or better than comparable methods, as determined by pedigree consistency of germline calls and comparison of somatic calls to COSMIC database variants. Manta consistently assembles a higher fraction of its calls to base-pair resolution, allowing for improved downstream annotation and analysis of clinical significance. We provide Manta as a community resource to facilitate practical and routine structural variant analysis in clinical and research sequencing scenarios. AVAILABILITY AND IMPLEMENTATION: Manta is released under the open-source GPLv3 license. Source code, documentation and Linux binaries are available from https://github.com/Illumina/manta. CONTACT: csaunders@illumina.com SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Neoplasias/genética , DNA de Neoplasias , Genoma , Genômica , Humanos , Software
9.
Mol Genet Genomic Med ; 3(2): 130-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25802883

RESUMO

Matching molecularly targeted therapies with cancer subtype-specific gene mutations is revolutionizing oncology care. However, for rare cancers this approach is problematic due to the often poor understanding of the disease's natural history and phenotypic heterogeneity, making treatment of these cancers a particularly unmet medical need in clinical oncology. Advanced Sézary syndrome (SS), an aggressive, exceedingly rare variant of cutaneous T-cell lymphoma (CTCL) is a prototypical example of a rare cancer. Through whole genome and RNA sequencing (RNA-seq) of a SS patient's tumor we discovered a highly expressed gene fusion between CTLA4 (cytotoxic T lymphocyte antigen 4) and CD28 (cluster of differentiation 28), predicting a novel stimulatory molecule on the surface of tumor T cells. Treatment with the CTLA4 inhibitor ipilimumab resulted in a rapid clinical response. Our findings suggest a novel driver mechanism for SS, and cancer in general, and exemplify an emerging model of cancer treatment using exploratory genomic analysis to identify a personally targeted treatment option when conventional therapies are exhausted.

10.
Bioinformatics ; 29(16): 2041-3, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23736529

RESUMO

SUMMARY: An ultrafast DNA sequence aligner (Isaac Genome Alignment Software) that takes advantage of high-memory hardware (>48 GB) and variant caller (Isaac Variant Caller) have been developed. We demonstrate that our combined pipeline (Isaac) is four to five times faster than BWA + GATK on equivalent hardware, with comparable accuracy as measured by trio conflict rates and sensitivity. We further show that Isaac is effective in the detection of disease-causing variants and can easily/economically be run on commodity hardware. AVAILABILITY: Isaac has an open source license and can be obtained at https://github.com/sequencing.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software , Variação Genética , Genoma Humano , Humanos
11.
Proc Natl Acad Sci U S A ; 110(14): 5552-7, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23509297

RESUMO

Standard whole-genome genotyping technologies are unable to determine haplotypes. Here we describe a method for rapid and cost-effective long-range haplotyping. Genomic DNA is diluted and distributed into multiple aliquots such that each aliquot receives a fraction of a haploid copy. The DNA template in each aliquot is amplified by multiple displacement amplification, converted into barcoded sequencing libraries using Nextera technology, and sequenced in multiplexed pools. To assess the performance of our method, we combined two male genomic DNA samples at equal ratios, resulting in a sample with diploid X chromosomes with known haplotypes. Pools of the multiplexed sequencing libraries were subjected to targeted pull-down of a 1-Mb contiguous region of the X-chromosome Duchenne muscular dystrophy gene. We were able to phase the Duchenne muscular dystrophy region into two contiguous haplotype blocks with a mean length of 494 kb. The haplotypes showed 99% agreement with the consensus base calls made by sequencing the individual DNAs. We subsequently used the strategy to haplotype two human genomes. Standard genomic sequencing to identify all heterozygous SNPs in the sample was combined with dilution-amplification-based sequencing data to resolve the phase of identified heterozygous SNPs. Using this procedure, we were able to phase >95% of the heterozygous SNPs from the diploid sequence data. The N50 for a Yoruba male DNA was 702 kb whereas the N50 for a European female DNA was 358 kb. Therefore, the strategy described here is suitable for haplotyping of a set of targeted regions as well as of the entire genome.


Assuntos
Técnicas Genéticas , Genoma Humano/genética , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Código de Barras de DNA Taxonômico/métodos , Distrofina/genética , Feminino , Biblioteca Gênica , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética
12.
J Comput Biol ; 18(3): 401-13, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21385043

RESUMO

With the advent of next generation sequencing technologies, the cost of sequencing whole genomes is poised to go below $1000 per human individual in a few years. As more and more genomes are sequenced, analysis methods are undergoing rapid development, making it tempting to store sequencing data for long periods of time so that the data can be re-analyzed with the latest techniques. The challenging open research problems, huge influx of data, and rapidly improving analysis techniques have created the need to store and transfer very large volumes of data. Compression can be achieved at many levels, including trace level (compressing image data), sequence level (compressing a genomic sequence), and fragment-level (compressing a set of short, redundant fragment reads, along with quality-values on the base-calls). We focus on fragment-level compression, which is the pressing need today. Our article makes two contributions, implemented in a tool, SlimGene. First, we introduce a set of domain specific loss-less compression schemes that achieve over 40× compression of fragments, outperforming bzip2 by over 6×. Including quality values, we show a 5× compression using less running time than bzip2. Second, given the discrepancy between the compression factor obtained with and without quality values, we initiate the study of using "lossy" quality values. Specifically, we show that a lossy quality value quantization results in 14× compression but has minimal impact on downstream applications like SNP calling that use the quality values. Discrepancies between SNP calls made between the lossy and loss-less versions of the data are limited to low coverage areas where even the SNP calls made by the loss-less version are marginal.


Assuntos
Algoritmos , Compressão de Dados/métodos , Genômica/métodos , Genoma Humano , Humanos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
13.
Genome Res ; 14(5): 870-7, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15078854

RESUMO

We have developed a simple and efficient algorithm to identify each member of a large collection of DNA-linked objects through the use of hybridization, and have applied it to the manufacture of randomly assembled arrays of beads in wells. Once the algorithm has been used to determine the identity of each bead, the microarray can be used in a wide variety of applications, including single nucleotide polymorphism genotyping and gene expression profiling. The algorithm requires only a few labels and several sequential hybridizations to identify thousands of different DNA sequences with great accuracy. We have decoded tens of thousands of arrays, each with 1520 sequences represented at approximately 30-fold redundancy by up to approximately 50,000 beads, with a median error rate of <1 x 10(-4) per bead. The approach makes use of error checking codes and provides, for the first time, a direct functional quality control of every element of each array that is manufactured. The algorithm can be applied to any spatially fixed collection of objects or molecules that are associated with specific DNA sequences.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Biologia Computacional/métodos , Análise de Sequência com Séries de Oligonucleotídeos/tendências , Distribuição Aleatória , Projetos de Pesquisa , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA