Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
2.
Data Brief ; 39: 107460, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841015

RESUMO

Samples of ∼1 µm films of CeO2 doped with 2 wt% Mo, 1.5 wt% Ru, 0.75 wt% Pd, 0.5 wt% Re and 0.25 wt% Rh grown with pulsed laser deposition were irradiated with I2+ ions (610 °C and 730 °C, 1016 and 5 × 1016 I2+/cm2). For selected samples post-irradiation heat treatment was conducted (900 °C, 1100 °C). The specimens were sectioned with focused ion beam milling and characterized in a transmission electron microscope with energy-dispersive x-ray spectroscopy, and with atom-probe tomography. Energy-dispersive x-ray spectroscopy was used to obtain elemental maps showing the distribution of dopants in the specimen after exposure. Some of these maps are discussed in detail in our companion article "Formation of multicomponent alloy particles in doped ceria under I2+ ion irradiation and thermal annealing" in the Journal of Nuclear Materials [1]. Advanced computational analysis could be used to more accurately quantify local compositions. Data is provided for additional regions of interest and one additional irradiation condition. The doped ceria film that was heat treated at 1100 °C delaminated from the substrate in most places. Samples were extracted from the underside of a delaminated piece and analyzed with atom-probe tomography. The resulting data show ceria and a Mo-rich particle and demonstrate that this approach is feasable in principle to study local compositions in a sample exposed to such extreme conditions.

3.
Sci Rep ; 7(1): 15813, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29150617

RESUMO

Accelerator-based ion beam irradiation techniques have been used to study radiation effects in materials for decades. Although carbon contamination induced by ion beams in target materials is a well-known issue in some material systems, it has not been fully characterized nor quantified for studies in ferritic/martensitic (F/M) steels that are candidate materials for applications such as core structural components in advanced nuclear reactors. It is an especially important issue for this class of material because of the strong effect of carbon level on precipitate formation. In this paper, the ability to quantify carbon contamination using three common techniques, namely time-of-flight secondary ion mass spectroscopy (ToF-SIMS), atom probe tomography (APT), and transmission electron microscopy (TEM) is compared. Their effectiveness and shortcomings in determining carbon contamination are presented and discussed. The corresponding microstructural changes related to carbon contamination in ion irradiated F/M steels are also presented and briefly discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA