RESUMO
Developing methodologies for on-demand control of the release of a molecular guest requires the rational design of stimuli-responsive hosts with functional cavities. While a substantial number of responsive metallacages have already been described, the case of coordination-tweezers has been less explored. Herein, we report the first example of a redox-triggered guest release from a metalla-assembled tweezer. This tweezer incorporates two redox-active panels constructed from the electron-rich 9-(1,3-dithiol-2-ylidene)fluorene unit that are facing each other. It dimerizes spontaneously in solution and the resulting interpenetrated supramolecular structure can dissociate in the presence of an electron-poor planar unit, forming a 1:1 host-guest complex. This complex dissociates upon tweezer oxidation/dimerization, offering an original redox-triggered molecular delivery pathway.
RESUMO
Two M12 L6 redox-active self-assembled cages constructed from an electron-rich ligand based on the extended tetrathiafulvalene framework (exTTF) and metal complexes with a linear geometry (PdII and AgI ) are depicted. Remarkably, based on a combination of specific structural and electronic features, the polycationic self-assembled AgI coordination cage undergoes a supramolecular transformation upon oxidation into a three-dimensional coordination polymer, that is characterized by X-ray crystallography. This redox-controlled change of the molecular organization results from the drastic conformational modifications accompanying oxidation of the exTTF moiety.
RESUMO
Tuberculosis (TB) remains one of the major causes of death worldwide, in particular because of the emergence of multidrug-resistant TB. Herein we explored the potential of an alternative class of molecules as anti-TB agents. Thus, a series of novel 3-substituted triazolophthalazines was quickly and easily prepared from commercial hydralazine hydrochloride as starting material and were further evaluated for their antimycobacterial activities and cytotoxicities. Four of the synthesized compounds were found to effectively inhibit the Mycobacterium tuberculosis (M.tb) H37 Rv strain with minimum inhibitory concentration (MIC) values <10â µg mL(-1) , whereas no compounds displayed cytotoxicity against HCT116 human cell lines (IC50 >100â µm). More remarkably, the most potent compounds proved to be active to a similar extent against various multidrug-resistant M.tb strains, thus uncovering a mode of action distinct from that of standard antitubercular agents. Overall, their ease of preparation, combined with their attractive antimycobacterial activities, make such triazolophthalazine-based derivatives promising leads for further development.