Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Nat Methods ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284960
2.
Lab Anim ; : 236772241247105, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39238288

RESUMO

Variability is inherent in most biological systems due to differences among members of the population. Two types of variation are commonly observed in studies: differences among samples and the "error" in estimating a population parameter (e.g. mean) from a sample. While these concepts are fundamentally very different, the associated variation is often expressed using similar notation-an interval that represents a range of values with a lower and upper bound. In this article we discuss how common intervals are used (and misused).

3.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39256198

RESUMO

Accurate assessment of fragment abundance within a genome is crucial in clinical genomics applications such as the analysis of copy number variation (CNV). However, this task is often hindered by biased coverage in regions with varying guanine-cytosine (GC) content. These biases are particularly exacerbated in hybridization capture sequencing due to GC effects on probe hybridization and polymerase chain reaction (PCR) amplification efficiency. Such GC content-associated variations can exert a negative impact on the fidelity of CNV calling within hybridization capture panels. In this report, we present panelGC, a novel metric, to quantify and monitor GC biases in hybridization capture sequencing data. We establish the efficacy of panelGC, demonstrating its proficiency in identifying and flagging potential procedural anomalies, even in situations where instrument and experimental monitoring data may not be readily accessible. Validation using real-world datasets demonstrates that panelGC enhances the quality control and reliability of hybridization capture panel sequencing.


Assuntos
Composição de Bases , Variações do Número de Cópias de DNA , Genômica , Humanos , Genômica/métodos , Análise de Sequência de DNA/métodos , Hibridização de Ácido Nucleico/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Genoma Humano , Reprodutibilidade dos Testes
4.
Nat Commun ; 15(1): 4165, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755180

RESUMO

The role for routine whole genome and transcriptome analysis (WGTA) for poor prognosis pediatric cancers remains undetermined. Here, we characterize somatic mutations, structural rearrangements, copy number variants, gene expression, immuno-profiles and germline cancer predisposition variants in children and adolescents with relapsed, refractory or poor prognosis malignancies who underwent somatic WGTA and matched germline sequencing. Seventy-nine participants with a median age at enrollment of 8.8 y (range 6 months to 21.2 y) are included. Germline pathogenic/likely pathogenic variants are identified in 12% of participants, of which 60% were not known prior. Therapeutically actionable variants are identified by targeted gene report and whole genome in 32% and 62% of participants, respectively, and increase to 96% after integrating transcriptome analyses. Thirty-two molecularly informed therapies are pursued in 28 participants with 54% achieving a clinical benefit rate; objective response or stable disease ≥6 months. Integrated WGTA identifies therapeutically actionable variants in almost all tumors and are directly translatable to clinical care of children with poor prognosis cancers.


Assuntos
Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Neoplasias , Humanos , Criança , Neoplasias/genética , Neoplasias/terapia , Feminino , Adolescente , Masculino , Pré-Escolar , Prognóstico , Perfilação da Expressão Gênica/métodos , Lactente , Transcriptoma , Adulto Jovem , Sequenciamento Completo do Genoma , Mutação em Linhagem Germinativa , Mutação , Genoma Humano/genética , Predisposição Genética para Doença
6.
Nat Methods ; 21(1): 4-6, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38167655
7.
Nat Commun ; 14(1): 5380, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666802

RESUMO

Anaerobic digestion of municipal mixed sludge produces methane that can be converted into renewable natural gas. To improve economics of this microbial mediated process, metabolic interactions catalyzing biomass conversion to energy need to be identified. Here, we present a two-year time series associating microbial metabolism and physicochemistry in a full-scale wastewater treatment plant. By creating a co-occurrence network with thousands of time-resolved microbial populations from over 100 samples spanning four operating configurations, known and novel microbial consortia with potential to drive methane production were identified. Interactions between these populations were further resolved in relation to specific process configurations by mapping metagenome assembled genomes and cognate gene expression data onto the network. Prominent interactions included transcriptionally active Methanolinea methanogens and syntrophic benzoate oxidizing Syntrophorhabdus, as well as a Methanoregulaceae population and putative syntrophic acetate oxidizing bacteria affiliated with Bateroidetes (Tenuifilaceae) expressing the glycine cleavage bypass of the Wood-Ljungdahl pathway.


Assuntos
Metagenoma , Águas Residuárias , Consórcios Microbianos/genética , Esgotos , Metano
8.
Nat Methods ; 20(9): 1269-1270, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37580560
9.
Nat Methods ; 20(2): 165-167, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36627451
12.
Nat Commun ; 13(1): 756, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140225

RESUMO

Manual interpretation of variants remains rate limiting in precision oncology. The increasing scale and complexity of molecular data generated from comprehensive sequencing of cancer samples requires advanced interpretative platforms as precision oncology expands beyond individual patients to entire populations. To address this unmet need, we introduce a Platform for Oncogenomic Reporting and Interpretation (PORI), comprising an analytic framework that facilitates the interpretation and reporting of somatic variants in cancer. PORI integrates reporting and graph knowledge base tools combined with support for manual curation at the reporting stage. PORI represents an open-source platform alternative to commercial reporting solutions suitable for comprehensive genomic data sets in precision oncology. We demonstrate the utility of PORI by matching 9,961 pan-cancer genome atlas tumours to the graph knowledge base, calculating therapeutically informative alterations, and making available reports describing select individual samples.


Assuntos
Carcinogênese/genética , Neoplasias/genética , Biomarcadores Tumorais , Bases de Dados Genéticas , Variação Genética , Genômica , Humanos , Bases de Conhecimento , Medicina de Precisão
13.
J Virol Methods ; 299: 114339, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34687784

RESUMO

The COVID-19 pandemic has highlighted the need for generic reagents and flexible systems in diagnostic testing. Magnetic bead-based nucleic acid extraction protocols using 96-well plates on open liquid handlers are readily amenable to meet this need. Here, one such approach is rigorously optimized to minimize cross-well contamination while maintaining sensitivity.


Assuntos
COVID-19 , Ácidos Nucleicos , Teste para COVID-19 , Humanos , Indicadores e Reagentes , Fenômenos Magnéticos , Pandemias , RNA Viral/genética , SARS-CoV-2 , Sensibilidade e Especificidade
15.
Commun Biol ; 4(1): 1217, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686760

RESUMO

Recent studies on marine heat waves describe water temperature anomalies causing changes in food web structure, bloom dynamics, biodiversity loss, and increased plant and animal mortality. However, little information is available on how water temperature anomalies impact prokaryotes (bacteria and archaea) inhabiting ocean waters. This is a nontrivial omission given their integral roles in driving major biogeochemical fluxes that influence ocean productivity and the climate system. Here we present a time-resolved study on the impact of a large-scale warm water surface anomaly in the northeast subarctic Pacific Ocean, colloquially known as the Blob, on prokaryotic community compositions. Multivariate statistical analyses identified significant depth- and season-dependent trends that were accentuated during the Blob. Moreover, network and indicator analyses identified shifts in specific prokaryotic assemblages from typically particle-associated before the Blob to taxa considered free-living and chemoautotrophic during the Blob, with potential implications for primary production and organic carbon conversion and export.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Mudança Climática , Temperatura Alta/efeitos adversos , Água do Mar/microbiologia , Oceano Pacífico , Estações do Ano
17.
Nat Methods ; 18(10): 1265, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34531569
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA