Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Commun ; 13(1): 3912, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853876

RESUMO

Penguins lost the ability to fly more than 60 million years ago, subsequently evolving a hyper-specialized marine body plan. Within the framework of a genome-scale, fossil-inclusive phylogeny, we identify key geological events that shaped penguin diversification and genomic signatures consistent with widespread refugia/recolonization during major climate oscillations. We further identify a suite of genes potentially underpinning adaptations related to thermoregulation, oxygenation, diving, vision, diet, immunity and body size, which might have facilitated their remarkable secondary transition to an aquatic ecology. Our analyses indicate that penguins and their sister group (Procellariiformes) have the lowest evolutionary rates yet detected in birds. Together, these findings help improve our understanding of how penguins have transitioned to the marine environment, successfully colonizing some of the most extreme environments on Earth.


Assuntos
Spheniscidae , Animais , Evolução Biológica , Fósseis , Genoma , Genômica , Filogenia , Spheniscidae/genética
2.
Anat Rec (Hoboken) ; 305(7): 1563-1591, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34813153

RESUMO

Of the more than 6,000 members of the most speciose avian clade, Passeriformes (perching birds), only the five species of dippers (Cinclidae, Cinclus) use their wings to swim underwater. Among nonpasserine wing-propelled divers (alcids, diving petrels, penguins, and plotopterids), convergent evolution of morphological characteristics related to this highly derived method of locomotion have been well-documented, suggesting that the demands of this behavior exert strong selective pressure. However, despite their unique anatomical attributes, dippers have been the focus of comparatively few studies and potential convergence between dippers and nonpasseriform wing-propelled divers has not been previously examined. In this study, a suite of characteristics that are shared among many wing-propelled diving birds were identified and the distribution of those characteristics across representatives of all clades of extant and extinct wing-propelled divers were evaluated to assess convergence. Putatively convergent characteristics were drawn from a relatively wide range of sources including osteology, myology, endocranial anatomy, integument, and ethology. Comparisons reveal that whereas nonpasseriform wing-propelled divers do in fact share some anatomical characteristics putatively associated with the biomechanics of underwater "flight", dippers have evolved this highly derived method of locomotion without converging on the majority of concomitant changes observed in other taxa. Changes in the flight musculature and feathers, reduction of the keratin bounded external nares and an increase in subcutaneous fat are shared with other wing-propelled diving birds, but endocranial anatomy shows no significant shifts and osteological modifications are limited. Muscular and integumentary novelties may precede skeletal and neuroendocranial morphology in the acquisition of this novel locomotory mode, with implications for understanding potential biases in the fossil record of other such transitions. Thus, dippers represent an example of a highly derived and complex behavioral convergence that is not fully associated with the anatomical changes observed in other wing-propelled divers, perhaps owing to the relative recency of their divergence from nondiving passeriforms.


Assuntos
Aves Canoras , Animais , Evolução Biológica , Voo Animal , Fósseis , Osteologia , Natação , Asas de Animais/anatomia & histologia
3.
Curr Biol ; 30(22): R1347-R1353, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33202226

RESUMO

Feathers are the most complex integumentary structures in the animal world. They come in a variety of forms, the most familiar of which are remiges (flight feathers). Flight feathers are composed of a central shaft made up of a hollow calamus (quill), which is inserted into the skin, and a more distal rachis. Hundreds of parallel barbs branch from the sides of the rachis. In turn, smaller hooked barbules branch off the barbs, allowing them to interlock in a tight zipper-like fashion to form vanes. Variations in rachis, barb and barbule morphology result in other feather types such as contour feathers, bristles and down feathers. Feathers have a remarkable array of functions - they form airfoils and elaborate display structures, they serve to camouflage and insulate, to generate and help detect sound, and even to disintegrate into powder to condition other feathers.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Plumas/anatomia & histologia , Animais , Voo Animal , Fósseis/anatomia & histologia
4.
Proc Biol Sci ; 287(1932): 20201497, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32781949

RESUMO

New Zealand is a globally significant hotspot for seabird diversity, but the sparse fossil record for most seabird lineages has impeded our understanding of how and when this hotspot developed. Here, we describe multiple exceptionally well-preserved specimens of a new species of penguin from tightly dated (3.36-3.06 Ma) Pliocene deposits in New Zealand. Bayesian and parsimony analyses place Eudyptes atatu sp. nov. as the sister species to all extant and recently extinct members of the crested penguin genus Eudyptes. The new species has a markedly more slender upper beak and mandible compared with other Eudyptes penguins. Our combined evidence approach reveals that deep bills evolved in both crested and stiff-tailed penguins (Pygoscelis) during the Pliocene. That deep bills arose so late in the greater than 60 million year evolutionary history of penguins suggests that dietary shifts may have occurred as wind-driven Pliocene upwelling radically restructured southern ocean ecosystems. Ancestral area reconstructions using BioGeoBEARS identify New Zealand as the most likely ancestral area for total-group penguins, crown penguins and crested penguins. Our analyses provide a timeframe for recruitment of crown penguins into the New Zealand avifauna, indicating this process began in the late Neogene and was completed via multiple waves of colonizing lineages.


Assuntos
Evolução Biológica , Spheniscidae/fisiologia , Animais , Teorema de Bayes , Ecossistema , Fósseis , Nova Zelândia , Filogenia
5.
Curr Biol ; 30(11): 2026-2036.e3, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32330422

RESUMO

Relative brain sizes in birds can rival those of primates, but large-scale patterns and drivers of avian brain evolution remain elusive. Here, we explore the evolution of the fundamental brain-body scaling relationship across the origin and evolution of birds. Using a comprehensive dataset sampling> 2,000 modern birds, fossil birds, and theropod dinosaurs, we infer patterns of brain-body co-variation in deep time. Our study confirms that no significant increase in relative brain size accompanied the trend toward miniaturization or evolution of flight during the theropod-bird transition. Critically, however, theropods and basal birds show weaker integration between brain size and body size, allowing for rapid changes in the brain-body relationship that set the stage for dramatic shifts in early crown birds. We infer that major shifts occurred rapidly in the aftermath of the Cretaceous-Paleogene mass extinction within Neoaves, in which multiple clades achieved higher relative brain sizes because of a reduction in body size. Parrots and corvids achieved the largest brains observed in birds via markedly different patterns. Parrots primarily reduced their body size, whereas corvids increased body and brain size simultaneously (with rates of brain size evolution outpacing rates of body size evolution). Collectively, these patterns suggest that an early adaptive radiation in brain size laid the foundation for subsequent selection and stabilization.


Assuntos
Evolução Biológica , Aves/anatomia & histologia , Aves/genética , Encéfalo/anatomia & histologia , Animais , Tamanho do Órgão
7.
Nature ; 579(7799): 397-401, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32188952

RESUMO

Our understanding of the earliest stages of crown bird evolution is hindered by an exceedingly sparse avian fossil record from the Mesozoic era. The most ancient phylogenetic divergences among crown birds are known to have occurred in the Cretaceous period1-3, but stem-lineage representatives of the deepest subclades of crown birds-Palaeognathae (ostriches and kin), Galloanserae (landfowl and waterfowl) and Neoaves (all other extant birds)-are unknown from the Mesozoic era. As a result, key questions related to the ecology4,5, biogeography3,6,7 and divergence times1,8-10 of ancestral crown birds remain unanswered. Here we report a new Mesozoic fossil that occupies a position close to the last common ancestor of Galloanserae and fills a key phylogenetic gap in the early evolutionary history of crown birds10,11. Asteriornis maastrichtensis, gen. et sp. nov., from the Maastrichtian age of Belgium (66.8-66.7 million years ago), is represented by a nearly complete, three-dimensionally preserved skull and associated postcranial elements. The fossil represents one of the only well-supported crown birds from the Mesozoic era12, and is the first Mesozoic crown bird with well-represented cranial remains. Asteriornis maastrichtensis exhibits a previously undocumented combination of galliform (landfowl)-like and anseriform (waterfowl)-like features, and its presence alongside a previously reported Ichthyornis-like taxon from the same locality13 provides direct evidence of the co-occurrence of crown birds and avialan stem birds. Its occurrence in the Northern Hemisphere challenges biogeographical hypotheses of a Gondwanan origin of crown birds3, and its relatively small size and possible littoral ecology may corroborate proposed ecological filters4,5,9 that influenced the persistence of crown birds through the end-Cretaceous mass extinction.


Assuntos
Aves/classificação , Fósseis , Filogenia , Animais , Bélgica , Aves/anatomia & histologia , Feminino , Masculino , Crânio/anatomia & histologia
8.
Gigascience ; 8(9)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31531675

RESUMO

BACKGROUND: Penguins (Sphenisciformes) are a remarkable order of flightless wing-propelled diving seabirds distributed widely across the southern hemisphere. They share a volant common ancestor with Procellariiformes close to the Cretaceous-Paleogene boundary (66 million years ago) and subsequently lost the ability to fly but enhanced their diving capabilities. With ∼20 species among 6 genera, penguins range from the tropical Galápagos Islands to the oceanic temperate forests of New Zealand, the rocky coastlines of the sub-Antarctic islands, and the sea ice around Antarctica. To inhabit such diverse and extreme environments, penguins evolved many physiological and morphological adaptations. However, they are also highly sensitive to climate change. Therefore, penguins provide an exciting target system for understanding the evolutionary processes of speciation, adaptation, and demography. Genomic data are an emerging resource for addressing questions about such processes. RESULTS: Here we present a novel dataset of 19 high-coverage genomes that, together with 2 previously published genomes, encompass all extant penguin species. We also present a well-supported phylogeny to clarify the relationships among penguins. In contrast to recent studies, our results demonstrate that the genus Aptenodytes is basal and sister to all other extant penguin genera, providing intriguing new insights into the adaptation of penguins to Antarctica. As such, our dataset provides a novel resource for understanding the evolutionary history of penguins as a clade, as well as the fine-scale relationships of individual penguin lineages. Against this background, we introduce a major consortium of international scientists dedicated to studying these genomes. Moreover, we highlight emerging issues regarding ensuring legal and respectful indigenous consultation, particularly for genomic data originating from New Zealand Taonga species. CONCLUSIONS: We believe that our dataset and project will be important for understanding evolution, increasing cultural heritage and guiding the conservation of this iconic southern hemisphere species assemblage.


Assuntos
Genoma , Spheniscidae/genética , Animais , Evolução Molecular , Filogenia
9.
Proc Natl Acad Sci U S A ; 116(16): 7916-7925, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30936315

RESUMO

Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyperdiverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families. Then, we calibrated this phylogeny using 13 fossils to examine the effects of different events in Earth history on the timing and rate of passerine diversification. Our analyses reconcile passerine diversification with the fossil and geological records; suggest that passerines originated on the Australian landmass ∼47 Ma; and show that subsequent dispersal and diversification of passerines was affected by a number of climatological and geological events, such as Oligocene glaciation and inundation of the New Zealand landmass. Although passerine diversification rates fluctuated throughout the Cenozoic, we find no link between the rate of passerine diversification and Cenozoic global temperature, and our analyses show that the increases in passerine diversification rate we observe are disconnected from the colonization of new continents. Taken together, these results suggest more complex mechanisms than temperature change or ecological opportunity have controlled macroscale patterns of passerine speciation.


Assuntos
Passeriformes , Animais , Austrália , Biodiversidade , Evolução Biológica , Fósseis , Nova Zelândia , Passeriformes/classificação , Passeriformes/genética , Passeriformes/fisiologia , Filogenia
10.
Mol Biol Evol ; 36(4): 784-797, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30722030

RESUMO

The emergence of islands has been linked to spectacular radiations of diverse organisms. Although penguins spend much of their lives at sea, they rely on land for nesting, and a high proportion of extant species are endemic to geologically young islands. Islands may thus have been crucial to the evolutionary diversification of penguins. We test this hypothesis using a fossil-calibrated phylogeny of mitochondrial genomes (mitogenomes) from all extant and recently extinct penguin taxa. Our temporal analysis demonstrates that numerous recent island-endemic penguin taxa diverged following the formation of their islands during the Plio-Pleistocene, including the Galápagos (Galápagos Islands), northern rockhopper (Gough Island), erect-crested (Antipodes Islands), Snares crested (Snares) and royal (Macquarie Island) penguins. Our analysis also reveals two new recently extinct island-endemic penguin taxa from New Zealand's Chatham Islands: Eudyptes warhami sp. nov. and a dwarf subspecies of the yellow-eyed penguin, Megadyptes antipodes richdalei ssp. nov. Eudyptes warhami diverged from the Antipodes Islands erect-crested penguin between 1.1 and 2.5 Ma, shortly after the emergence of the Chatham Islands (∼3 Ma). This new finding of recently evolved taxa on this young archipelago provides further evidence that the radiation of penguins over the last 5 Ma has been linked to island emergence. Mitogenomic analyses of all penguin species, and the discovery of two new extinct penguin taxa, highlight the importance of island formation in the diversification of penguins, as well as the extent to which anthropogenic extinctions have affected island-endemic taxa across the Southern Hemisphere's isolated archipelagos.


Assuntos
Especiação Genética , Genoma Mitocondrial , Ilhas , Spheniscidae/genética , Animais , Fósseis , Nova Zelândia , Filogeografia
11.
Curr Biol ; 29(4): 657-663.e1, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30744971

RESUMO

Beak shape plays a key role in avian radiations and is one of the most intensely studied aspects of avian evolution and ecology [1-4]. Perhaps no other group is more closely associated with the study of beak shape than Passeriformes (passerines or perching birds), the most species-rich ordinal clade of modern birds. However, despite their extraordinary present-day diversity, our understanding of early passerine evolution has been hindered by their sparse fossil record [5, 6]. Here, we describe two new species of early Eocene stem passerines from the Green River Formation of the United States and the Messel Formation of Germany. These species are the oldest fossil birds to exhibit a finch-like beak and provide the earliest evidence for a diet focused on small, hard seeds in crown birds. Given that granivory is a key adaptation that allows passerines to exploit open temperate environments, it is notable that both species occurred in subtropical environments [7, 8]. Phylogenetic analyses place both species within the Psittacopedidae, an extinct Eocene clade of zygodactyl stem passeriforms that also includes the slender-beaked nectarivorous Pumiliornis, the short-beaked Psittacopes, and the thrush-beaked Morsoravis. Our results reveal that stem passerines attained a diversity of beak shapes paralleling many of the morphotypes present in extant passerine finches, thrushes, and sunbirds, more than 35 million years before these morphotypes arose in the crown group. Extinction of these ecologically diverse fossil taxa may be linked to more sophisticated nest construction in anisodactyl crown passerines versus cavity-nesting in Eocene zygodactyl stem passerines [9].


Assuntos
Bico/anatomia & histologia , Evolução Biológica , Fósseis/anatomia & histologia , Passeriformes/anatomia & histologia , Passeriformes/classificação , Filogenia , Animais , Dieta , Alemanha , Características de História de Vida , Sementes
12.
Proc Natl Acad Sci U S A ; 114(30): 8047-8052, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28696285

RESUMO

Evidence is accumulating for a rapid diversification of birds following the K-Pg extinction. Recent molecular divergence dating studies suggest that birds radiated explosively during the first few million years of the Paleocene; however, fossils from this interval remain poorly represented, hindering our understanding of morphological and ecological specialization in early neoavian birds. Here we report a small fossil bird from the Nacimiento Formation of New Mexico, constrained to 62.221-62.517 Ma. This partial skeleton represents the oldest arboreal crown group bird known. Phylogenetic analyses recovered Tsidiiyazhi abini gen. et sp. nov. as a member of the Sandcoleidae, an extinct basal clade of stem mousebirds (Coliiformes). The discovery of Tsidiiyazhi pushes the minimum divergence ages of as many as nine additional major neoavian lineages into the earliest Paleocene, compressing the duration of the proposed explosive post-K-Pg radiation of modern birds into a very narrow temporal window parallel to that suggested for placental mammals. Simultaneously, Tsidiiyazhi provides evidence for the rapid morphological (and likely ecological) diversification of crown birds. Features of the foot indicate semizygodactyly (the ability to facultatively reverse the fourth pedal digit), and the arcuate arrangement of the pedal trochleae bears a striking resemblance to the conformation in owls (Strigiformes). Inclusion of fossil taxa and branch length estimates impacts ancestral state reconstructions, revealing support for the independent evolution of semizygodactyly in Coliiformes, Leptosomiformes, and Strigiformes, none of which is closely related to extant clades exhibiting full zygodactyly.


Assuntos
Aves , Fósseis , Filogenia , Animais , Extinção Biológica , Especiação Genética
13.
Syst Biol ; 66(1): 57-73, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28173531

RESUMO

The total-evidence approach to divergence time dating uses molecular and morphological data from extant and fossil species to infer phylogenetic relationships, species divergence times, and macroevolutionary parameters in a single coherent framework. Current model-based implementations of this approach lack an appropriate model for the tree describing the diversification and fossilization process and can produce estimates that lead to erroneous conclusions. We address this shortcoming by providing a total-evidence method implemented in a Bayesian framework. This approach uses a mechanistic tree prior to describe the underlying diversification process that generated the tree of extant and fossil taxa. Previous attempts to apply the total-evidence approach have used tree priors that do not account for the possibility that fossil samples may be direct ancestors of other samples, that is, ancestors of fossil or extant species or of clades. The fossilized birth­death (FBD) process explicitly models the diversification, fossilization, and sampling processes and naturally allows for sampled ancestors. This model was recently applied to estimate divergence times based on molecular data and fossil occurrence dates. We incorporate the FBD model and a model of morphological trait evolution into a Bayesian total-evidence approach to dating species phylogenies. We apply this method to extant and fossil penguins and show that the modern penguins radiated much more recently than has been previously estimated, with the basal divergence in the crown clade occurring at ∼12.7 ∼12.7 Ma and most splits leading to extant species occurring in the last 2 myr. Our results demonstrate that including stem-fossil diversity can greatly improve the estimates of the divergence times of crown taxa. The method is available in BEAST2 (version 2.4) software www.beast2.org with packages SA (version at least 1.1.4) and morph-models (version at least 1.0.4) installed.


Assuntos
Modelos Biológicos , Filogenia , Spheniscidae/classificação , Animais , Teorema de Bayes , Fósseis , Especiação Genética , Spheniscidae/anatomia & histologia , Spheniscidae/genética , Fatores de Tempo
15.
16.
J Anat ; 229(2): 173-90, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26403623

RESUMO

The rapidly expanding interest in, and availability of, digital tomography data to visualize casts of the vertebrate endocranial cavity housing the brain (endocasts) presents new opportunities and challenges to the field of comparative neuroanatomy. The opportunities are many, ranging from the relatively rapid acquisition of data to the unprecedented ability to integrate critically important fossil taxa. The challenges consist of navigating the logistical barriers that often separate a researcher from high-quality data and minimizing the amount of non-biological variation expressed in endocasts - variation that may confound meaningful and synthetic results. Our purpose here is to outline preferred approaches for acquiring digital tomographic data, converting those data to an endocast, and making those endocasts as meaningful as possible when considered in a comparative context. This review is intended to benefit those just getting started in the field but also serves to initiate further discussion between active endocast researchers regarding the best practices for advancing the discipline. Congruent with the theme of this volume, we draw our examples from birds and the highly encephalized non-avian dinosaurs that comprise closely related outgroups along their phylogenetic stem lineage.


Assuntos
Anatomia Comparada/métodos , Aves/anatomia & histologia , Encéfalo/anatomia & histologia , Dinossauros/anatomia & histologia , Imageamento Tridimensional/métodos , Neuroimagem/métodos , Animais , Fósseis
17.
J Anat ; 227(5): 611-30, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26360700

RESUMO

Substantial changes in bone histology accompany the secondary adaptation to life in the water. This transition is well documented in several lineages of mammals and non-avian reptiles, but has received relatively little attention in birds. This study presents new observations on the long bone microstructure of penguins, based on histological sections from two extant taxa (Spheniscus and Aptenodytes) and eight fossil specimens belonging to stem lineages (†Palaeospheniscus and several indeterminate Eocene taxa). High bone density in penguins results from compaction of the internal cortical tissues, and thus penguin bones are best considered osteosclerotic rather than pachyostotic. Although the oldest specimens sampled in this study represent stages of penguin evolution that occurred at least 25 million years after the loss of flight, major differences in humeral structure were observed between these Eocene stem taxa and extant taxa. This indicates that the modification of flipper bone microstructure continued long after the initial loss of flight in penguins. It is proposed that two key transitions occurred during the shift from the typical hollow avian humerus to the dense osteosclerotic humerus in penguins. First, a reduction of the medullary cavity occurred due to a decrease in the amount of perimedullary osteoclastic activity. Second, a more solid cortex was achieved by compaction. In extant penguins and †Palaeospheniscus, most of the inner cortex is formed by rapid osteogenesis, resulting an initial latticework of woven-fibered bone. Subsequently, open spaces are filled by slower, centripetal deposition of parallel-fibered bone. Eocene stem penguins formed the initial latticework, but the subsequent round of compaction was less complete, and thus open spaces remained in the adult bone. In contrast to the humerus, hindlimb bones from Eocene stem penguins had smaller medullary cavities and thus higher compactness values compared with extant taxa. Although cortical lines of arrested growth have been observed in extant penguins, none was observed in any of the current sampled specimens. Therefore, it is likely that even these 'giant' penguin taxa completed their growth cycle without a major pause in bone deposition, implying that they did not undergo a prolonged fasting interval before reaching adult size.


Assuntos
Fêmur/anatomia & histologia , Úmero/anatomia & histologia , Spheniscidae/anatomia & histologia , Tarso Animal/anatomia & histologia , Tíbia/anatomia & histologia , Animais , Evolução Biológica , Densidade Óssea/fisiologia , Fêmur/fisiologia , Fósseis , Úmero/fisiologia , Filogenia , Tarso Animal/fisiologia , Tíbia/fisiologia
18.
Syst Biol ; 64(5): 853-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25922515

RESUMO

Fossils provide the principal basis for temporal calibrations, which are critical to the accuracy of divergence dating analyses. Translating fossil data into minimum and maximum bounds for calibrations is the most important-often least appreciated-step of divergence dating. Properly justified calibrations require the synthesis of phylogenetic, paleontological, and geological evidence and can be difficult for nonspecialists to formulate. The dynamic nature of the fossil record (e.g., new discoveries, taxonomic revisions, updates of global or local stratigraphy) requires that calibration data be updated continually lest they become obsolete. Here, we announce the Fossil Calibration Database (http://fossilcalibrations.org), a new open-access resource providing vetted fossil calibrations to the scientific community. Calibrations accessioned into this database are based on individual fossil specimens and follow best practices for phylogenetic justification and geochronological constraint. The associated Fossil Calibration Series, a calibration-themed publication series at Palaeontologia Electronica, will serve as a key pipeline for peer-reviewed calibrations to enter the database.


Assuntos
Bases de Dados Factuais/normas , Fósseis , Filogenia , Acesso à Informação , Calibragem , Interpretação Estatística de Dados , Internet , Tempo
19.
Curr Biol ; 24(21): R1052-5, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25517372

RESUMO

Remarkable feathered dinosaur fossils have blurred the lines between early birds and their non-avian dinosaur relatives. Rapid skeletal evolution and decreasing body size along one particular lineage of theropod dinosaurs paved the way for the spectacular radiation of birds.


Assuntos
Aves/anatomia & histologia , Aves/genética , Dinossauros/anatomia & histologia , Dinossauros/genética , Filogenia , Animais
20.
Proc Natl Acad Sci U S A ; 111(29): 10624-9, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002475

RESUMO

Pelagornithidae is an extinct clade of birds characterized by bizarre tooth-like bony projections of the jaws. Here, the flight capabilities of pelagornithids are explored based on data from a species with the largest reported wingspan among birds. Pelagornis sandersi sp. nov. is represented by a skull and substantial postcranial material. Conservative wingspan estimates (∼6.4 m) exceed theoretical maximums based on extant soaring birds. Modeled flight properties indicate that lift:drag ratios and glide ratios for P. sandersi were near the upper limit observed in extant birds and suggest that pelagornithids were highly efficient gliders, exploiting a long-range soaring ecology.


Assuntos
Aves/anatomia & histologia , Aves/fisiologia , Tamanho Corporal , Voo Animal/fisiologia , Asas de Animais/anatomia & histologia , Animais , Fenômenos Biomecânicos , Extinção Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA