Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Prostate ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708958

RESUMO

BACKGROUND: Preclinical models recapitulating the metastatic phenotypes are essential for developing the next-generation therapies for metastatic prostate cancer (mPC). We aimed to establish a cohort of clinically relevant mPC models, particularly androgen receptor positive (AR+) bone metastasis models, from LuCaP patient-derived xenografts (PDX) that reflect the heterogeneity and complexity of mPC. METHODS: PDX tumors were dissociated into single cells, modified to express luciferase, and were inoculated into NSG mice via intracardiac injection. The progression of metastases was monitored by bioluminescent imaging. Histological phenotypes of metastases were characterized by immunohistochemistry and immunofluorescence staining. Castration responses were further investigated in two AR-positive models. RESULTS: Our PDX-derived metastasis (PDM) model collection comprises three AR+ adenocarcinomas (ARPC) and one AR- neuroendocrine carcinoma (NEPC). All ARPC models developed bone metastases with either an osteoblastic, osteolytic, or mixed phenotype, while the NEPC model mainly developed brain metastasis. Different mechanisms of castration resistance were observed in two AR+ PDM models with distinct genotypes, such as combined loss of TP53 and RB1 in one model and expression of AR splice variant 7 (AR-V7) expression in another model. Intriguingly, the castration-resistant tumors displayed inter- and intra-tumor as well as organ-specific heterogeneity in lineage specification. CONCLUSION: Genetically diverse PDM models provide a clinically relevant system for biomarker identification and personalized medicine in metastatic castration-resistant prostate cancer.

2.
Stem Cells ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563224

RESUMO

To resist lineage-dependent therapies such as androgen receptor inhibition, prostate luminal epithelial adenocarcinoma cells often adopt a stem-like state resulting in lineage-plasticity and phenotypic heterogeneity. Castrate resistant prostate adenocarcinoma can transition to neuroendocrine and occasionally to amphicrine, co-expressed luminal and neuroendocrine, phenotypes. We developed CRPC patient-derived organoid models that preserve heterogeneity of the originating tumor, including an amphicrine model displaying a range of luminal and neuroendocrine phenotypes. To gain biological insight and to identify potential treatment targets within heterogeneous tumor cell populations, we assessed the lineage hierarchy and molecular characteristics of various CRPC tumor subpopulations. Transcriptionally similar stem/progenitor cells were identified for all lineage populations. Lineage tracing in amphicrine CRPC showed that heterogeneity originated from distinct subclones of infrequent stem/progenitor cells that produced mainly quiescent differentiated amphicrine progeny. By contrast, adenocarcinoma CRPC progeny originated from stem/progenitor cells and self-renewing differentiated luminal cells. NEPC was composed almost exclusively of self-renewing stem/progenitor cells. Amphicrine subpopulations were enriched for secretory luminal, mesenchymal, and enzalutamide treatment persistent signatures that characterize clinical progression. Finally, the amphicrine stem/progenitor subpopulation was specifically depleted with an AURKA inhibitor, which blocked tumor growth. These data illuminate distinct stem cell characteristics for subtype-specific CRPC in addition to demonstrating a context for targeting differentiation-competent prostate stem cells.

3.
medRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370835

RESUMO

Patients diagnosed with localized high-risk prostate cancer have higher rates of recurrence, and the introduction of neoadjuvant intensive hormonal therapies seeks to treat occult micrometastatic disease by their addition to definitive treatment. Sufficient profiling of baseline disease has remained a challenge in enabling the in-depth assessment of phenotypes associated with exceptional vs. poor pathologic responses after treatment. In this study, we report comprehensive and integrative gene expression profiling of 37 locally advanced prostate tumors prior to six months of androgen deprivation therapy (ADT) plus the androgen receptor (AR) inhibitor enzalutamide prior to radical prostatectomy. A robust transcriptional program associated with HER2 activity was positively associated with poor outcome and opposed AR activity, even after adjusting for common genomic alterations in prostate cancer including PTEN loss and expression of the TMPRSS2:ERG fusion. Patients experiencing exceptional pathologic responses demonstrated lower levels of HER2 and phospho-HER2 by immunohistochemistry of biopsy tissues. The inverse correlation of AR and HER2 activity was found to be a universal feature of all aggressive prostate tumors, validated by transcriptional profiling an external cohort of 121 patients and immunostaining of tumors from 84 additional patients. Importantly, the AR activity-low, HER2 activity-high cells that resist ADT are a pre-existing subset of cells that can be targeted by HER2 inhibition alone or in combination with enzalutamide. In summary, we show that prostate tumors adopt an AR activity-low prior to antiandrogen exposure that can be exploited by treatment with HER2 inhibitors.

4.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37725435

RESUMO

Antibody-drug conjugates (ADCs) are a promising targeted cancer therapy; however, patient selection based solely on target antigen expression without consideration for cytotoxic payload vulnerabilities has plateaued clinical benefits. Biomarkers to capture patients who might benefit from specific ADCs have not been systematically determined for any cancer. We present a comprehensive therapeutic and biomarker analysis of a B7H3-ADC with pyrrolobenzodiazepine(PBD) payload in 26 treatment-resistant, metastatic prostate cancer (mPC) models. B7H3 is a tumor-specific surface protein widely expressed in mPC, and PBD is a DNA cross-linking agent. B7H3 expression was necessary but not sufficient for B7H3-PBD-ADC responsiveness. RB1 deficiency and/or replication stress, characteristics of poor prognosis, and conferred sensitivity were associated with complete tumor regression in both neuroendocrine (NEPC) and androgen receptor positive (ARPC) prostate cancer models, even with low B7H3 levels. Non-ARPC models, which are currently lacking efficacious treatment, demonstrated the highest replication stress and were most sensitive to treatment. In RB1 WT ARPC tumors, SLFN11 expression or select DNA repair mutations in SLFN11 nonexpressors governed response. Importantly, WT TP53 predicted nonresponsiveness (7 of 8 models). Overall, biomarker-focused selection of models led to high efficacy of in vivo treatment. These data enable a paradigm shift to biomarker-driven trial designs for maximizing clinical benefit of ADC therapies.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias da Próstata , Masculino , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Antineoplásicos/uso terapêutico , Proteínas Nucleares
5.
Cancers (Basel) ; 15(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37568709

RESUMO

Distant metastasis is the major cause of cancer-related deaths in men with prostate cancer (PCa). An in vivo functional screen was used to identify microRNAs (miRNAs) regulating metastatic dissemination of PCa cells. PC3 cells transduced with pooled miRZiP™ lentivirus library (anti-miRNAs) were injected intraprostatic to 13 NSG mice followed by targeted barcode/anti-miR sequencing. PCa cells in the primary tumours showed a homogenous pattern of anti-miRNAs, but different anti-miRNAs were enriched in liver, lung, and bone marrow, with anti-miR-379 highly enriched in the latter. The bone metastasis-promoting phenotype induced by decreased miR-379 levels was also confirmed in a less metastatic PCa cell line, 22Rv1, where all mice injected intracardially with anti-miR-379-22Rv1 cells developed bone metastases. The levels of miR-379 were found to be lower in bone metastases compared to primary tumours and non-cancerous prostatic tissue in a patient cohort. In vitro functional studies suggested that the mechanism of action was that reduced levels of miR-379 gave an increased colony formation capacity in conditions mimicking the bone microenvironment. In conclusion, our data suggest that specific miRNAs affect the establishment of primary tumours and metastatic dissemination, with a loss of miR-379 promoting metastases in bone.

6.
medRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205576

RESUMO

Background: Patients with localized prostate cancer have historically been assigned to clinical risk groups based on local disease extent, serum prostate specific antigen (PSA), and tumor grade. Clinical risk grouping is used to determine the intensity of treatment with external beam radiotherapy (EBRT) and androgen deprivation therapy (ADT), yet a substantial proportion of patients with intermediate and high risk localized prostate cancer will develop biochemical recurrence (BCR) and require salvage therapy. Prospective identification of patients destined to experience BCR would allow treatment intensification or selection of alternative therapeutic strategies. Methods: Twenty-nine individuals with intermediate or high risk prostate cancer were prospectively recruited to a clinical trial designed to profile the molecular and imaging features of prostate cancer in patients undergoing EBRT and ADT. Whole transcriptome cDNA microarray and whole exome sequencing were performed on pretreatment targeted biopsy of prostate tumors (n=60). All patients underwent pretreatment and 6-month post EBRT multiparametric MRI (mpMRI), and were followed with serial PSA to assess presence or absence of BCR. Genes differentially expressed in the tumor of patients with and without BCR were investigated using pathways analysis tools and were similarly explored in alternative datasets. Differential gene expression and predicted pathway activation were evaluated in relation to tumor response on mpMRI and tumor genomic profile. A novel TGF-ß gene signature was developed in the discovery dataset and applied to a validation dataset. Findings: Baseline MRI lesion volume and PTEN/TP53 status in prostate tumor biopsies correlated with the activation state of TGF-ß signaling measured using pathway analysis. All three measures correlated with the risk of BCR after definitive RT. A prostate cancer-specific TGF-ß signature discriminated between patients that experienced BCR vs. those that did not. The signature retained prognostic utility in an independent cohort. Interpretation: TGF-ß activity is a dominant feature of intermediate-to-unfavorable risk prostate tumors prone to biochemical failure after EBRT with ADT. TGF-ß activity may serve as a prognostic biomarker independent of existing risk factors and clinical decision-making criteria. Funding: This research was supported by the Prostate Cancer Foundation, the Department of Defense Congressionally Directed Medical Research Program, National Cancer Institute, and the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

7.
Res Sq ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38196575

RESUMO

Sjögren's Disease (SjD) is a systemic autoimmune disease without a clear etiology or effective therapy. Utilizing unbiased single-cell and spatial transcriptomics to analyze human minor salivary glands in health and disease we developed a comprehensive understanding of the cellular landscape of healthy salivary glands and how that landscape changes in SjD patients. We identified novel seromucous acinar cell types and identified a population of PRR4+CST3+WFDC2- seromucous acinar cells that are particularly targeted in SjD. Notably, GZMK+CD8 T cells, enriched in SjD, exhibited a cytotoxic phenotype and were physically associated with immune-engaged epithelial cells in disease. These findings shed light on the immune response's impact on transitioning acinar cells with high levels of secretion and explain the loss of this specific cell population in SjD. This study explores the complex interplay of varied cell types in the salivary glands and their role in the pathology of Sjögren's Disease.

8.
Elife ; 112022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36511483

RESUMO

Advanced prostate malignancies are a leading cause of cancer-related deaths in men, in large part due to our incomplete understanding of cellular drivers of disease progression. We investigate prostate cancer cell dynamics at single-cell resolution from disease onset to the development of androgen independence in an in vivo murine model. We observe an expansion of a castration-resistant intermediate luminal cell type that correlates with treatment resistance and poor prognosis in human patients. Moreover, transformed epithelial cells and associated fibroblasts create a microenvironment conducive to pro-tumorigenic immune infiltration, which is partially androgen responsive. Androgen-independent prostate cancer leads to significant diversification of intermediate luminal cell populations characterized by a range of androgen signaling activity, which is inversely correlated with proliferation and mRNA translation. Accordingly, distinct epithelial populations are exquisitely sensitive to translation inhibition, which leads to epithelial cell death, loss of pro-tumorigenic signaling, and decreased tumor heterogeneity. Our findings reveal a complex tumor environment largely dominated by castration-resistant luminal cells and immunosuppressive infiltrates.


Assuntos
Androgênios , Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Próstata/metabolismo , Neoplasias da Próstata/patologia , Orquiectomia , Dinâmica Populacional , Receptores Androgênicos/metabolismo , Progressão da Doença , Microambiente Tumoral
9.
Discov Oncol ; 13(1): 97, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181613

RESUMO

BACKGROUND: The activities of MYC, the androgen receptor, and its associated pioneer factors demonstrate substantial reprogramming between early and advanced prostate cancer. Although previous studies have shown a shift in cellular metabolic requirements associated with prostate cancer progression, the epigenetic regulation of these processes is incompletely described. Here, we have integrated chromatin immunoprecipitation sequencing (ChIP-seq) and whole-transcriptome sequencing to identify novel regulators of metabolism in advanced prostate tumors characterized by elevated MYC activity. RESULTS: Using ChIP-seq against MYC, HOXB13, and AR in LNCaP cells, we observed redistribution of co-bound sites suggestive of differential KMT2A activity as a function of MYC expression. In a cohort of 177 laser-capture microdissected foci of prostate tumors, KMT2A expression was positively correlated with MYC activity, AR activity, and HOXB13 expression, but decreased with tumor grade severity. However, KMT2A expression was negatively correlated with these factors in 25 LuCaP patient-derived xenograft models of advanced prostate cancer and 99 laser-capture microdissected foci of metastatic castration-resistant prostate cancer. Stratified by KMT2A expression, ChIP-seq against AR and HOXB13 in 15 LuCaP patient-derived xenografts showed an inverse association with sites involving genes implicated in lipid metabolism, including the arachidonic acid metabolic enzyme PLA2G4F. LuCaP patient-derived xenograft models grown as organoids recapitulated the inverse association between KMT2A expression and fluorine-18 labeled arachidonic acid uptake in vitro. CONCLUSIONS: Our study demonstrates that the epigenetic activity of transcription factor oncogenes exhibits a shift during prostate cancer progression with distinctive phenotypic effects on metabolism. These epigenetically driven changes in lipid metabolism may serve as novel targets for the development of novel imaging agents and therapeutics.

10.
Clin Cancer Res ; 28(16): 3509-3525, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35695870

RESUMO

PURPOSE: Therapies targeting the androgen receptor (AR) have improved the outcome for patients with castration-sensitive prostate cancer (CSPC). Expression of the constitutively active AR splice variant-7 (AR-V7) has shown clinical utility as a predictive biomarker of AR-targeted therapy resistance in castration-resistant prostate cancer (CRPC), but its importance in CSPC remains understudied. EXPERIMENTAL DESIGN: We assessed different approaches to quantify AR-V7 mRNA and protein in prostate cancer cell lines, patient-derived xenograft (PDX) models, publicly available cohorts, and independent institutional clinical cohorts, to identify reliable approaches for detecting AR-V7 mRNA and protein and its association with clinical outcome. RESULTS: In CSPC and CRPC cohorts, AR-V7 mRNA was much less abundant when detected using reads across splice boundaries than when considering isoform-specific exonic reads. The RM7 AR-V7 antibody had increased sensitivity and specificity for AR-V7 protein detection by immunohistochemistry (IHC) in CRPC cohorts but rarely identified AR-V7 protein reactivity in CSPC cohorts, when compared with the EPR15656 AR-V7 antibody. Using multiple CRPC PDX models, we demonstrated that AR-V7 expression was exquisitely sensitive to hormonal manipulation. In CSPC institutional cohorts, AR-V7 protein quantification by either assay was associated neither with time to development of castration resistance nor with overall survival, and intense neoadjuvant androgen-deprivation therapy did not lead to significant AR-V7 mRNA or staining following treatment. Neither pre- nor posttreatment AR-V7 levels were associated with volumes of residual disease after therapy. CONCLUSIONS: This study demonstrates that further analytical validation and clinical qualification are required before AR-V7 can be considered for clinical use in CSPC as a predictive biomarker.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Antagonistas de Androgênios/uso terapêutico , Biomarcadores , Castração , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
11.
J Urol ; 208(1): 90-99, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35227084

RESUMO

PURPOSE: Neoadjuvant intense androgen deprivation therapy (iADT) can exert a wide range of histological responses, which in turn are reflected in the final prostatectomy specimen. Accurate identification and measurement of residual tumor volumes are critical for tracking and stratifying patient outcomes. MATERIALS AND METHODS: The goal of this current study was to evaluate the ability of antibodies against prostate-specific membrane antigen (PSMA) to specifically detect residual tumor in a cohort of 35 patients treated with iADT plus enzalutamide for 6 months prior to radical prostatectomy. RESULTS: Residual carcinoma was detected in 31 patients, and PSMA reacted positively with tumor in all cases. PSMA staining was 96% sensitive for tumor, with approximately 82% of benign regions showing no reactivity. By contrast, PSMA positively reacted with 72% of benign regions in a control cohort of 37 untreated cases, resulting in 28% specificity for tumor. PSMA further identified highly dedifferentiated prostate carcinomas including tumors with evidence of neuroendocrine differentiation. CONCLUSIONS: We propose that anti-PSMA immunostaining be a standardized marker for identifying residual cancer in the setting of iADT.


Assuntos
Neoplasias da Próstata , Antagonistas de Androgênios/uso terapêutico , Androgênios , Humanos , Masculino , Terapia Neoadjuvante , Neoplasia Residual , Próstata/patologia , Antígeno Prostático Específico , Prostatectomia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico
12.
Mol Cancer Res ; 20(5): 782-793, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35082166

RESUMO

Treatment-induced tumor dormancy is a state in cancer progression where residual disease is present but remains asymptomatic. Dormant cancer cells are treatment-resistant and responsible for cancer recurrence and metastasis. Prostate cancer treated with androgen-deprivation therapy (ADT) often enters a dormant state. ADT-induced prostate cancer dormancy remains poorly understood due to the challenge in acquiring clinical dormant prostate cancer cells and the lack of representative models. In this study, we aimed to develop clinically relevant models for studying ADT-induced prostate cancer dormancy. Dormant prostate cancer models were established by castrating mice bearing patient-derived xenografts (PDX) of hormonal naïve or sensitive prostate cancer. Dormancy status and tumor relapse were monitored and evaluated. Paired pre- and postcastration (dormant) PDX tissues were subjected to morphologic and transcriptome profiling analyses. As a result, we established eleven ADT-induced dormant prostate cancer models that closely mimicked the clinical courses of ADT-treated prostate cancer. We identified two ADT-induced dormancy subtypes that differed in morphology, gene expression, and relapse rates. We discovered transcriptomic differences in precastration PDXs that predisposed the dormancy response to ADT. We further developed a dormancy subtype-based, predisposed gene signature that was significantly associated with ADT response in hormonal naïve prostate cancer and clinical outcome in castration-resistant prostate cancer treated with ADT or androgen-receptor pathway inhibitors. IMPLICATIONS: We have established highly clinically relevant PDXs of ADT-induced dormant prostate cancer and identified two dormancy subtypes, leading to the development of a novel predicative gene signature that allows robust risk stratification of patients with prostate cancer to ADT or androgen-receptor pathway inhibitors.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Antagonistas de Androgênios/farmacologia , Antagonistas de Receptores de Andrógenos , Androgênios/uso terapêutico , Animais , Humanos , Masculino , Camundongos , Recidiva Local de Neoplasia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia
13.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34415294

RESUMO

Intratumoral heterogeneity is a well-documented feature of human cancers and is associated with outcome and treatment resistance. However, a heterogeneous tumor transcriptome contributes an unknown level of variability to analyses of differentially expressed genes (DEGs) that may contribute to phenotypes of interest, including treatment response. Although current clinical practice and the vast majority of research studies use a single sample from each patient, decreasing costs of sequencing technologies and computing power have made repeated-measures analyses increasingly economical. Repeatedly sampling the same tumor increases the statistical power of DEG analysis, which is indispensable toward downstream analysis and also increases one's understanding of within-tumor variance, which may affect conclusions. Here, we compared five different methods for analyzing gene expression profiles derived from repeated sampling of human prostate tumors in two separate cohorts of patients. We also benchmarked the sensitivity of generalized linear models to linear mixed models for identifying DEGs contributing to relevant prostate cancer pathways based on a ground-truth model.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Neoplasias/genética , Transcriptoma , Algoritmos , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Neoplasias/diagnóstico , Neoplasias da Próstata/genética , Análise de Sequência de RNA
14.
Nat Commun ; 12(1): 4669, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344873

RESUMO

Diseases are a manifestation of how thousands of proteins interact. In several diseases, such as cancer and Alzheimer's disease, proteome-wide disturbances in protein-protein interactions are caused by alterations to chaperome scaffolds termed epichaperomes. Epichaperome-directed chemical probes may be useful for detecting and reversing defective chaperomes. Here we provide structural, biochemical, and functional insights into the discovery of epichaperome probes, with a focus on their use in central nervous system diseases. We demonstrate on-target activity and kinetic selectivity of a radiolabeled epichaperome probe in both cells and mice, together with a proof-of-principle in human patients in an exploratory single group assignment diagnostic study (ClinicalTrials.gov Identifier: NCT03371420). The clinical study is designed to determine the pharmacokinetic parameters and the incidence of adverse events in patients receiving a single microdose of the radiolabeled probe administered by intravenous injection. In sum, we introduce a discovery platform for brain-directed chemical probes that specifically modulate epichaperomes and provide proof-of-principle applications in their use in the detection, quantification, and modulation of the target in complex biological systems.


Assuntos
Sistema Nervoso Central/metabolismo , Chaperonas Moleculares/metabolismo , Mapeamento de Interação de Proteínas/instrumentação , Proteoma/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Camundongos , Sondas Moleculares/química , Sondas Moleculares/farmacocinética , Sondas Moleculares/farmacologia , Sondas Moleculares/uso terapêutico , Tomografia por Emissão de Pósitrons
15.
Clin Cancer Res ; 27(17): 4836-4847, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34168052

RESUMO

PURPOSE: A subset of primary prostate cancer expresses programmed death-ligand 1 (PD-L1), but whether they have a unique tumor immune microenvironment or genomic features is unclear. EXPERIMENTAL DESIGN: We selected PD-L1-positive high-grade and/or high-risk primary prostate cancer, characterized tumor-infiltrating lymphocytes with multiplex immunofluorescence, and identified genomic alterations in immunogenic and nonimmunogenic tumor foci. RESULTS: One quarter of aggressive localized prostate cancer cases (29/115) had tumor PD-L1 expression more than 5%. This correlated with increased density of CD8+ T cells, a large fraction coexpressing PD-1, versus absent PD-1 expression on sparse CD8 T cells in unselected cases. Most CD8+PD-1+ cells did not express terminal exhaustion markers (TIM3 or LAG3), while a subset expressed TCF1. Consistent with these CD8+PD-1+TCF1+ cells being progenitors, they were found in antigen-presenting cell niches in close proximity to MHC-II+ cells. CD8 T-cell density in immunogenic prostate cancer and renal cell carcinoma (RCC) was nearly identical. Shallow RB1 and BRCA2 losses, and deep deletions of CHD1, were prevalent, the latter being strongly associated with a dendritic cell gene set in The Cancer Genome Atlas. Tumor mutation burden was variable; neither high microsatellite instability nor CDK12 alterations were present. CONCLUSIONS: A subset of localized prostate cancer is immunogenic, manifested by PD-L1 expression and CD8+ T-cell content comparable with RCC. The CD8+ T cells include effector cells and exhausted progenitor cells, which may be expanded by immune checkpoint inhibitors (ICI). Genomic losses of RB1, BRCA2, and CHD1 may be drivers of this phenotype. These findings indicate that immunotherapies may be effective in biomarker-selected subpopulations of patients with localized prostate cancer.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias da Próstata , Antígeno B7-H1/genética , Genes Supressores de Tumor , Humanos , Linfócitos do Interstício Tumoral , Masculino , Fenótipo , Neoplasias da Próstata/genética , Microambiente Tumoral/genética
16.
Front Oncol ; 11: 631021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842337

RESUMO

Molecular profiling of extracellular vesicles (EVs) offers novel opportunities for diagnostic applications, but the current major obstacle for clinical translation is the lack of efficient, robust, and reproducible isolation methods. To bridge that gap, we developed a microfluidic, non-contact, and low-input volume compatible acoustic trapping technology for EV isolation that enabled downstream small RNA sequencing. In the current study, we have further automated the acoustic microfluidics-based EV enrichment technique that enables us to serially process 32 clinical samples per run. We utilized the system to enrich EVs from urine collected as the first morning void from 207 men referred to 10-core prostate biopsy performed the same day. Using automated acoustic trapping, we successfully enriched EVs from 199/207 samples (96%). After RNA extraction, size selection, and library preparation, a total of 173/199 samples (87%) provided sufficient materials for next-generation sequencing that generated an average of 2 × 106 reads per sample mapping to the human reference genome. The predominant RNA species identified were fragments of long RNAs such as protein coding and retained introns, whereas small RNAs such as microRNAs (miRNA) accounted for less than 1% of the reads suggesting that partially degraded long RNAs out-competed miRNAs during sequencing. We found that the expression of six miRNAs was significantly different (Padj < 0.05) in EVs isolated from patients found to have high grade prostate cancer [ISUP 2005 Grade Group (GG) 4 or higher] compared to those with GG3 or lower, including those with no evidence of prostate cancer at biopsy. These included miR-23b-3p, miR-27a-3p, and miR-27b-3p showing higher expression in patients with GG4 or high grade prostate cancer, whereas miR-1-3p, miR-10a-5p, and miR-423-3p had lower expression in the GG4 PCa cases. Cross referencing our differentially expressed miRNAs to two large prostate cancer datasets revealed that the putative tumor suppressors miR-1, miR-23b, and miR-27a are consistently deregulated in prostate cancer. Taken together, this is the first time that our automated microfluidic EV enrichment technique has been found to be capable of enriching EVs on a large scale from 900 µl of urine for small RNA sequencing in a robust and disease discriminatory manner.

17.
Anal Chem ; 93(8): 3929-3937, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33592145

RESUMO

We report a new design of an acoustophoretic trapping device with significantly increased capacity and throughput, compared to current commercial acoustic trapping systems. Acoustic trapping enables nanoparticle and extracellular vesicle (EV) enrichment without ultracentrifugation. Current commercial acoustic trapping technology uses an acoustic single-node resonance and typically operates at flow rates <50 µL/min, which limits the processing of the larger samples. Here, we use a larger capillary that supports an acoustic multinode resonance, which increased the seed particle capacity 40 times and throughput 25-40 times compared to single-node systems. The resulting increase in capacity and throughput was demonstrated by isolation of nanogram amounts of microRNA from acoustically trapped urinary EVs within 10 min. Additionally, the improved trapping performance enabled isolation of extracellular vesicles for downstream mass spectrometry analysis. This was demonstrated by the differential protein abundance profiling of urine samples (1-3 mL), derived from the non-trapped versus trapped urine samples.


Assuntos
Micropartículas Derivadas de Células , Vesículas Extracelulares , MicroRNAs , Acústica , Proteômica
18.
Front Oncol ; 10: 584280, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33575208

RESUMO

Prostate cancer incidence in young men has increased. Patients diagnosed at an earlier age are likely to have aggressive prostate cancer and treatment decisions are continuing to be weighted by patient age and life expectancy. Identification of age-associated gene-expression signatures hold great potential to augment current and future treatment modalities. To investigate age-specific tumor associated gene signatures and their potential biomarkers for disease aggressiveness, this study was designed and stratified into well and poorly differentiated tumor types of young (42-58 years) and old (66-73 years) prostate cancer patients. The differentially expressed genes related to tumor-normal differences between non-familial prostate cancer patients were identified and several genes uniquely associated with the age and tumor differentiation are markedly polarized. Overexpressed genes known to be associated with somatic genomic alterations was predominantly found in young men, such as TMPRESS2-ERG and c-MYC. On the other hand, old men have mostly down-regulated gene expressions indicating the loss of protective genes and reduced cell mediated immunity indicated by decreased HLA-A and HLA-B expression. The normalization for the benign signatures between the age groups indicates a significant age and tumor dependent heterogeneity exists among the patients with a great potential for age-specific and tumor differentiation-based therapeutic stratification of prostate cancer.

19.
Cancer Cell ; 36(5): 559-573.e7, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31668946

RESUMO

Alterations in protein-protein interaction networks are at the core of malignant transformation but have yet to be translated into appropriate diagnostic tools. We make use of the kinetic selectivity properties of an imaging probe to visualize and measure the epichaperome, a pathologic protein-protein interaction network. We are able to assay and image epichaperome networks in cancer and their engagement by inhibitor in patients' tumors at single-lesion resolution in real time, and demonstrate that quantitative evaluation at the level of individual tumors can be used to optimize dose and schedule selection. We thus provide preclinical and clinical evidence in the use of this theranostic platform for precision medicine targeting of the aberrant properties of protein networks.


Assuntos
Antineoplásicos/administração & dosagem , Chaperonas Moleculares/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Mapas de Interação de Proteínas/efeitos dos fármacos , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Esquema de Medicação , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Chaperonas Moleculares/metabolismo , Imagem Molecular , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Neoplasias/patologia , Medicina de Precisão/métodos , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/genética , Nanomedicina Teranóstica/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA