Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Glia ; 71(8): 1870-1889, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029764

RESUMO

Increasing evidence indicates that cellular identity can be reduced to the distinct gene regulatory networks controlled by transcription factors (TFs). However, redundancy exists in these states as different combinations of TFs can induce broadly similar cell types. We previously demonstrated that by overcoming gene silencing, it is possible to deterministically reprogram human pluripotent stem cells directly into cell types of various lineages. In the present study we leverage the consistency and precision of our approach to explore four different TF combinations encoding astrocyte identity, based on previously published reports. Analysis of the resulting induced astrocytes (iAs) demonstrated that all four cassettes generate cells with the typical morphology of in vitro astrocytes, which expressed astrocyte-specific markers. The transcriptional profiles of all four iAs clustered tightly together and displayed similarities with mature human astrocytes, although maturity levels differed between cells. Importantly, we found that the TF cassettes induced iAs with distinct differences with regards to their cytokine response and calcium signaling. In vivo transplantation of selected iAs into immunocompromised rat brains demonstrated long term stability and integration. In conclusion, all four TF combinations were able to induce stable astrocyte-like cells that were morphologically similar but showed subtle differences with respect to their transcriptome. These subtle differences translated into distinct differences with regards to cell function, that could be related to maturation state and/or regional identity of the resulting cells. This insight opens an opportunity to precision-engineer cells to meet functional requirements, for example, in the context of therapeutic cell transplantation.


Assuntos
Células-Tronco Neurais , Fatores de Transcrição , Ratos , Animais , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Astrócitos/metabolismo , Regulação da Expressão Gênica , Células-Tronco Neurais/metabolismo , Transcriptoma , Diferenciação Celular/fisiologia
2.
Brain Pathol ; 33(3): e13128, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36321260

RESUMO

Selective loss of discrete neuronal populations is a prominent feature of many neurodegenerative conditions, but the molecular basis of this is poorly understood. A central role of α-synuclein in the selective neurodegeneration of Parkinson's disease has been speculated, as its level of expression critically determines the propensity of this protein to misfold. To investigate whether the propensity of neuronal cell loss is associated with the level of endogenous α-synuclein expression, non-transgenic rats were given a single intravenous administration of α-synuclein pre-formed fibrils (PFFs) reversibly complexed with the rabies virus glycoprotein peptide (RVG9R). The number of surviving cells in different neuronal populations was systematically quantified using unbiased stereology. Our data demonstrated that a non-selective, transvascular delivery of α-synuclein PFFs led to a time-dependent loss of specific populations of midbrain (but not olfactory) dopaminergic neurons, medullary (but not pontine) cholinergic neurons, and brainstem serotonergic neurons. Contrary to the central role of endogenous α-synuclein expression in determining the seeding and aggregation propensity of pathological α-synuclein, we did not observe an association between the levels of α-synuclein expression in different regions of the rodent brain (although did not ascertain this at the individual cell level) and neurodegenerative propensity. The results from our study highlight the complexity of the neurodegenerative process generated by α-synuclein seeding. Further investigations are therefore required to elucidate the molecular basis of neurodegeneration driven by exogenous pathogenic α-synuclein spread.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Ratos , Animais , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Encéfalo/patologia , Neurônios Dopaminérgicos/metabolismo , Administração Intravenosa
3.
Cell Transplant ; 31: 9636897221105499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770772

RESUMO

Cell transplantation is an attractive treatment strategy for a variety of brain disorders, as it promises to replenish lost functions and rejuvenate the brain. In particular, transplantation of astrocytes has come into light recently as a therapy for amyotrophic lateral sclerosis (ALS); moreover, grafting of astrocytes also showed positive results in models of other conditions ranging from neurodegenerative diseases of older age to traumatic injury and stroke. Despite clear differences in etiology, disorders such as ALS, Parkinson's, Alzheimer's, and Huntington's diseases, as well as traumatic injury and stroke, converge on a number of underlying astrocytic abnormalities, which include inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. In this review, we examine these convergent pathways leading to astrocyte dysfunction, and explore the existing evidence for a therapeutic potential of transplantation of healthy astrocytes in various models. Existing literature presents a wide variety of methods to generate astrocytes, or relevant precursor cells, for subsequent transplantation, while described outcomes of this type of treatment also differ between studies. We take technical differences between methodologies into account to understand the variability of therapeutic benefits, or lack thereof, at a deeper level. We conclude by discussing some key requirements of an astrocyte graft that would be most suitable for clinical applications.


Assuntos
Esclerose Lateral Amiotrófica , Doença de Huntington , Doenças Neurodegenerativas , Acidente Vascular Cerebral , Astrócitos/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Acidente Vascular Cerebral/metabolismo
5.
Nat Commun ; 12(1): 6666, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795295

RESUMO

Extracellular vesicles (EVs) are biological nanoparticles with important roles in intercellular communication, and potential as drug delivery vehicles. Here we demonstrate a role for the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in EV assembly and secretion. We observe high levels of GAPDH binding to the outer surface of EVs via a phosphatidylserine binding motif (G58), which promotes extensive EV clustering. Further studies in a Drosophila EV biogenesis model reveal that GAPDH is required for the normal generation of intraluminal vesicles in endosomal compartments, and promotes vesicle clustering. Fusion of the GAPDH-derived G58 peptide to dsRNA-binding motifs enables highly efficient loading of small interfering RNA (siRNA) onto the EV surface. Such vesicles efficiently deliver siRNA to multiple anatomical regions of the brain in a Huntington's disease mouse model after systemic injection, resulting in silencing of the huntingtin gene in different regions of the brain.


Assuntos
Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Células-Tronco Mesenquimais/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Vesículas Extracelulares/ultraestrutura , Gliceraldeído-3-Fosfato Desidrogenases/genética , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL , Fosfatidilserinas/metabolismo , Ligação Proteica , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética
6.
Am J Physiol Cell Physiol ; 320(6): C1141-C1152, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950697

RESUMO

A patterned spread of proteinopathy represents a common characteristic of many neurodegenerative diseases. In Parkinson's disease (PD), misfolded forms of α-synuclein proteins accumulate in hallmark pathological inclusions termed Lewy bodies and Lewy neurites. Such protein aggregates seem to affect selectively vulnerable neuronal populations in the substantia nigra and to propagate within interconnected neuronal networks. Research findings suggest that these proteinopathic inclusions are present at very early time points in disease development, even before clear behavioral symptoms of dysfunction arise. In this study, we investigate the early pathophysiology developing after induced formation of such PD-related α-synuclein inclusions in a physiologically relevant in vitro setup using engineered human neural networks. We monitor the neural network activity using multielectrode arrays (MEAs) for a period of 3 wk following proteinopathy induction to identify associated changes in network function, with a special emphasis on the measure of network criticality. Self-organized criticality represents the critical point between resilience against perturbation and adaptational flexibility, which appears to be a functional trait in self-organizing neural networks, both in vitro and in vivo. We show that although developing pathology at early onset is not clearly manifest in standard measurements of network function, it may be discerned by investigating differences in network criticality states.


Assuntos
Rede Nervosa/metabolismo , Neurônios/metabolismo , alfa-Sinucleína/metabolismo , Células Cultivadas , Humanos , Corpos de Inclusão/metabolismo , Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo
7.
Mol Psychiatry ; 26(2): 556-567, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31758091

RESUMO

Parkinson's disease (PD) is an α-synucleinopathy characterized by the progressive loss of specific neuronal populations. Here, we develop a novel approach to transvascularly deliver proteins of complex quaternary structures, including α-synuclein preformed fibrils (pff). We show that a single systemic administration of α-synuclein pff triggers pathological transformation of endogenous α-synuclein in non-transgenic rats, which leads to neurodegeneration in discrete brain regions. Specifically, pff-exposed animals displayed a progressive deterioration in gastrointestinal and olfactory functions, which corresponded with the presence of cellular pathology in the central and enteric nervous systems. The α-synuclein pathology generated was both time dependent and region specific. Interestingly, the most significant neuropathological changes were observed in those brain regions affected in the early stages of PD. Our data therefore demonstrate for the first time that a single, transvascular administration of α-synuclein pff can lead to selective regional neuropathology resembling the premotor stage of idiopathic PD. Furthermore, this novel delivery approach could also be used to deliver a range of other pathogenic, as well as therapeutic, protein cargos transvascularly to the brain.


Assuntos
Sistema Nervoso Entérico , Doença de Parkinson , Animais , Encéfalo/metabolismo , Sistema Nervoso Entérico/metabolismo , Humanos , Neurônios/metabolismo , alfa-Sinucleína/metabolismo
8.
Sci Transl Med ; 12(572)2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268507

RESUMO

The past few decades have produced a large number of proof-of-concept studies in regenerative medicine. However, the route to clinical adoption is fraught with technical and translational obstacles that frequently consign promising academic solutions to the so-called "valley of death." Here, we present a proposed blueprint for translational regenerative medicine. We offer principles to help guide the selection of cells and materials, present key in vivo imaging modalities, and argue that the host immune response should be considered throughout design and development. Last, we suggest a pathway to navigate the often complex regulatory and manufacturing landscape of translational regenerative medicine.


Assuntos
Medicina Regenerativa , Pesquisa Translacional Biomédica
10.
J Neurol Neurosurg Psychiatry ; 91(6): 622-630, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32229581

RESUMO

OBJECTIVES: Alterations in dopamine neurotransmission underlie some of the clinical features of Huntington's disease (HD) and as such are a target for therapeutic intervention, especially for the treatment of chorea and some behavioural problems. However, justification for such an intervention is mainly based on case reports and small open label studies and the effects these drugs have on cognition in HD remain unclear. METHODS: In this study, we used the Enroll-HD observational database to assess the effects of antidopaminergic medication on motor, psychiatric and cognitive decline, over a 3-year period. We first looked at the annual rate of decline of a group of HD patients taking antidopaminergic medication (n=466) compared with an untreated matched group (n=466). The groups were matched on specified clinical variables using propensity score matching. Next, we studied a separate group of HD patients who were prescribed such medications part way through the study (n=90) and compared their rate of change before and after the drugs were introduced and compared this to a matched control group. RESULTS: We found that HD patients taking antidopaminergic medication had a slower progression in chorea and irritability compared with those not taking such medications. However, this same group of patients also displayed significantly greater rate of decline in a range of cognitive tasks. CONCLUSION: In conclusion we found that antidopaminergic treatment is associated with improvements in the choreic movements and irritability of HD but worsens cognition. However, further research is required to prospectively investigate this and whether these are causally linked, ideally in a double-blind placebo-controlled trial.


Assuntos
Coreia/tratamento farmacológico , Transtornos Cognitivos/induzido quimicamente , Cognição/efeitos dos fármacos , Antagonistas de Dopamina/uso terapêutico , Doença de Huntington/tratamento farmacológico , Humor Irritável/efeitos dos fármacos , Adulto , Idoso , Bases de Dados Factuais , Antagonistas de Dopamina/administração & dosagem , Antagonistas de Dopamina/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
Chem Sci ; 11(2): 525-533, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32190272

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an abnormal CAG expansion in exon 1 of the huntingtin (HTT) gene. Given its genetic basis it is possible to study patients both in the pre-manifest and manifest stages of the condition. While disease onset can be modelled using CAG repeat size, there are no easily accessible biomarkers that can objectively track disease progression. Here, we employed a holistic approach using spectral profiles generated using both surface-enhanced Raman spectroscopy (SERS) and Raman Spectroscopy (RS), on the serum of healthy participants and HD patients covering a wide spectrum of disease stages. We found that there was both genotype- and gender-specific segregation on using the full range in the fingerprint region with both SERS and RS. On a more detailed interrogation using specific spectral intervals, SERS revealed significant correlations with disease progression, in particular progression from pre-manifest through to advanced HD was associated with serum molecules related to protein misfolding and nucleotide catabolism. Thus, this study shows the potential of Raman spectroscopy-based techniques for stratification of patients and, of SERS, in particular, to track disease status through provision of 'spectral' biomarkers in HD, with clinical applications for other diseases and trials looking at disease modifying therapies.

12.
Brain Behav Immun ; 87: 473-488, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32006615

RESUMO

The innate immune system is implicated in Parkinson's disease (PD), but peripheral in-vivo clinical evidence of the components and driving mechanisms involved and their relationship with clinical heterogeneity and progression to dementia remain poorly explored. We examined changes in peripheral innate immune-related markers in PD cases (n = 41) stratified according to risk of developing early dementia. 'Higher Risk'(HR) (n = 23) and 'Lower Risk' (LR) (n = 18) groups were defined according to neuropsychological predictors and MAPT H1/H2 genotype, and compared to age, gender and genotype-matched controls. Monocyte subsets and expression of key surface markers were measured using flow cytometry. Serum markers including alpha-synuclein, inflammasome-related caspase-1 and bacterial translocation-related endotoxin were measured using quantitative immuno-based assays. Specific markers were further investigated using monocyte assays and validated in plasma samples from a larger incident PD cohort (n = 95). We found that classical monocyte frequency was elevated in PD cases compared to controls, driven predominantly by the HR group, in whom Toll-Like Receptor (TLR)4+ monocytes and monocyte Triggering Receptor Expressed on Myeloid cells-2 (TREM2) expression were also increased. Monocyte Human Leukocyte Antigen (HLA)-DR expression correlated with clinical variables, with lower levels associated with worse cognitive/motor performance. Notably, monocyte changes were accompanied by elevated serum bacterial endotoxin, again predominantly in the HR group. Serum alpha-synuclein and inflammasome-related caspase-1 were decreased in PD cases compared to controls regardless of group, with decreased monocyte alpha-synuclein secretion in HR cases. Further, alpha-synuclein and caspase-1 correlated positively in serum and monocyte lysates, and in plasma from the larger cohort, though no associations were seen with baseline or 36-month longitudinal clinical data. Principal Components Analysis of all monocyte and significant serum markers indicated 3 major components. Component 1 (alpha-synuclein, caspase-1, TLR2+ monocytes) differentiated PD cases and controls in both groups, while Component 2 (endotoxin, monocyte TREM2, alpha-synuclein) did so predominantly in the HR group. Component 3 (classical monocytes, alpha-synuclein) also differentiated cases and controls overall in both groups. These findings demonstrate that systemic innate immune changes are present in PD and are greatest in those at higher risk of rapid progression to dementia. Markers associated with PD per-se (alpha-synuclein, caspase-1), differ from those related to cognitive progression and clinical heterogeneity (endotoxin, TREM2, TLR4, classical monocytes, HLA-DR), with mechanistic and therapeutic implications. Alpha-synuclein and caspase-1 are associated, suggesting inflammasome involvement common to all PD, while bacterial translocation associated changes may contribute towards progression to Parkinson's dementia. Additionally, HLA-DR-associated variations in antigen presentation/clearance may modulate existing clinical disease.


Assuntos
Doença de Parkinson , Biomarcadores , Humanos , Imunidade Inata , Glicoproteínas de Membrana , Monócitos , Receptores Imunológicos , alfa-Sinucleína
13.
Chem Sci ; 11(18): 4773-4778, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-34122933

RESUMO

Soluble forms of aggregated tau misfolded protein, generally termed oligomers, are considered to be the most toxic species of the different assembly states that are the pathological components of neurodegenerative disorders. Therefore, a critical biomedical need exists for imaging probes that can identify and quantify them. We have designed and synthesized a novel fluorescent probe, pTP-TFE for which binding and selectivity profiles towards aggregated tau and Aß proteins were assessed. Our results have shown pTP-TFE to be selective for early forms of soluble tau aggregates, with high affinity of dissociation constants (K d) = 66 nM, and tenfold selectivity over mature tau fibrils. Furthermore, we found that pTP-TFE is selective for tau over Aß aggregates and had good cell permeability. This selectivity of pTP-TFE towards early forms of aggregated tau protein ex vivo was also supported with studies on human brain tissue containing tau and Aß pathology. To the best of our knowledge, this is the first fluorescent molecule to be reported to have this form of selectivity profile, which suggests that pTP-TFE is a unique probe candidate for imaging-based detection of early stages of Alzheimer's disease and other tauopathies.

14.
Neurobiol Dis ; 134: 104629, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31669752

RESUMO

The loss of native function of the DJ-1 protein has been linked to the development of Parkinson's (PD) and other neurodegenerative diseases. Here we show that DJ-1 aggregates into ß-sheet structured soluble and fibrillar aggregates in vitro under physiological conditions and that this process is promoted by the oxidation of its catalytic Cys106 residue. This aggregation resulted in the loss of its native biochemical glyoxalase function and in addition oxidized DJ-1 aggregates were observed to localize within Lewy bodies, neurofibrillary tangles and amyloid plaques in human PD and Alzheimer's (AD) patients' post-mortem brain tissue. These findings suggest that the aggregation of DJ-1 may be a critical player in the development of the pathology of PD and AD and demonstrate that loss of DJ-1 function can happen through DJ-1 aggregation. This could then contribute to AD and PD disease onset and progression.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/metabolismo , Proteína Desglicase DJ-1/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Humanos , Corpos de Lewy/química , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Emaranhados Neurofibrilares/química , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Doença de Parkinson/metabolismo , Placa Amiloide/química , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Agregados Proteicos , Agregação Patológica de Proteínas/patologia , Conformação Proteica em Folha beta , Proteína Desglicase DJ-1/química
15.
F1000Res ; 6: 1751, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29527290

RESUMO

Background: Recently, the development of Parkinson's disease (PD) has been linked to a number of genetic risk factors, of which the most common is glucocerebrosidase (GBA) mutations. Methods: We investigated PD and Gaucher Disease (GD) patient derived skin fibroblasts using biochemistry assays. Results: PD patient derived skin fibroblasts have normal glucocerebrosidase (GCase) activity, whilst patients with PD and GBA mutations have a selective deficit in GCase enzyme activity and impaired autophagic flux. Conclusions: This data suggests that only PD patients with a GBA mutation have altered GCase activity and autophagy, which may explain their more rapid clinical progression.

16.
Exp Neurol ; 285(Pt A): 72-81, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27632900

RESUMO

Recently it has been shown that there is impaired cerebral endothelial function in many chronic neurodegenerative disorders including Alzheimer's and Huntington's disease. Such problems have also been reported in Parkinson's disease, in which α-synuclein aggregation is the pathological hallmark. However, little is known about the relationship between misfolded α-synuclein and endothelial function. In the present study, we therefore examined whether α-synuclein preformed fibrils affect endothelial function in vitro. Using a well-established endothelial cell model, we found that the expression of tight junction proteins, in particular zona occludens-1 and occludin, was significantly perturbed in the presence of fibril-seeded neurotoxicity. Disrupted expression of these proteins was also found in the postmortem brains of patients dying with Parkinson's disease. There was though little evidence in vitro of functional impairments in endothelial cell function in terms of transendothelial electrical resistance and permeability. This study therefore shows for the first time that misfolded α-synuclein can interact and affect the cerebral endothelial system, although its relevance to the pathogenesis of Parkinson's disease remains to be elucidated.


Assuntos
Amiloide/metabolismo , Córtex Cerebral/citologia , Células Endoteliais/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Junções Íntimas/metabolismo , alfa-Sinucleína , Amiloide/química , Amiloide/ultraestrutura , Animais , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Linhagem Celular Transformada , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Impedância Elétrica , Células Endoteliais/ultraestrutura , Feto , Humanos , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Ocludina/metabolismo , Estatísticas não Paramétricas , Junções Íntimas/ultraestrutura , Fatores de Tempo , Proteína da Zônula de Oclusão-1/metabolismo
17.
Eur J Neurosci ; 44(6): 2396-403, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27422327

RESUMO

Multiple neurodegenerative disorders with tau pathology are characterised by the loss of memory and cognitive decline that can be associated with other symptoms including olfactory alterations that are often regarded as an early symptom of the diseases. Here, we have investigated whether olfactory dysfunction is present in the P301S human tau transgenic mice and if it is associated to tau pathology. Progressive tauopathy and neurodegeneration were noticeable in the olfactory bulb and piriform cortex at early age in the P301S human tau transgenic mice and olfactory sensitivity for social or non-social odours was significantly impaired at 3 months of age, when the piriform cortex-dependent odour-cross habituation was also disrupted. The olfactory alterations in the P301S tau transgenic mouse line provide an in vivo system where to test the mechanism-based therapies for the common and yet untreatable tauopathies.


Assuntos
Hipocampo/fisiopatologia , Memória/fisiologia , Bulbo Olfatório/fisiopatologia , Córtex Piriforme/fisiopatologia , Tauopatias/fisiopatologia , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos Transgênicos , Tauopatias/genética , Proteínas tau/genética , Proteínas tau/metabolismo
18.
ACS Nano ; 10(1): 307-16, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26649752

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive vibrational fingerprinting technique widely used in analytical and biosensing applications. For intracellular sensing, typically gold nanoparticles (AuNPs) are employed as transducers to enhance the otherwise weak Raman spectroscopy signals. Thus, the signature patterns of the molecular nanoenvironment around intracellular unlabeled AuNPs can be monitored in a reporter-free manner by SERS. The challenge of selectively identifying molecular changes resulting from cellular processes in large and multidimensional data sets and the lack of simple tools for extracting this information has resulted in limited characterization of fundamental cellular processes by SERS. Here, this shortcoming in analysis of SERS data sets is tackled by developing a suitable methodology of reference-based PCA-LDA (principal component analysis-linear discriminant analysis). This method is validated and exemplarily used to extract spectral features characteristic of the endocytic compartment inside cells. The voluntary uptake through vesicular endocytosis is widely used for the internalization of AuNPs into cells, but the characterization of the individual stages of this pathway has not been carried out. Herein, we use reporter-free SERS to identify and visualize the stages of endocytosis of AuNPs in cells and map the molecular changes via the adaptation and advantageous use of chemometric methods in combination with tailored sample preparation. Thus, our study demonstrates the capabilities of reporter-free SERS for intracellular analysis and its ability to provide a way of characterizing intracellular composition. The developed analytical approach is generic and enables the application of reporter-free SERS to identify unknown components in different biological matrices and materials.


Assuntos
Endossomos/ultraestrutura , Ouro/química , Lisossomos/ultraestrutura , Nanopartículas Metálicas/química , Neurônios/ultraestrutura , Análise Espectral Raman/métodos , Transporte Biológico/fisiologia , Linhagem Celular Tumoral , DNA/química , Análise Discriminante , Endocitose/fisiologia , Endossomos/metabolismo , Humanos , Hidrólise , Lisossomos/metabolismo , Neurônios/metabolismo , Análise de Componente Principal , RNA/química
19.
Virus Res ; 212: 64-9, 2016 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26003955

RESUMO

Human cytomegalovirus (HCMV) encodes abundant numbers of microRNAs (miRNAs) and other non-coding RNAs (ncRNAs) whose functions are presently under intense investigation. In this chapter, we discuss the function of one of the more well characterised virus-encoded ncRNAs, derived from the viral major early gene (Beta2.7). This RNA plays an anti-apoptotic role during infection by directly interacting with mitochondrial complex I to help maintain high levels of ATP production and by preventing the stress induced re-localisation of retinoid/interferon-induced mortality-19 protein, GRIM-19. We then go on to describe how an 800 nucleotide sub-domain of the Beta2.7 transcript, p137, has been exploited in the development of a novel therapeutic for the treatment of Parkinson's disease.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/metabolismo , Doença de Parkinson/tratamento farmacológico , RNA não Traduzido/uso terapêutico , RNA Viral/uso terapêutico , Animais , Citomegalovirus/genética , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Pesquisa Translacional Biomédica
20.
Ann Neurol ; 78(2): 160-77, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25866151

RESUMO

OBJECTIVE: Although the underlying cause of Huntington's disease (HD) is well established, the actual pathophysiological processes involved remain to be fully elucidated. In other proteinopathies such as Alzheimer's and Parkinson's diseases, there is evidence for impairments of the cerebral vasculature as well as the blood-brain barrier (BBB), which have been suggested to contribute to their pathophysiology. We investigated whether similar changes are also present in HD. METHODS: We used 3- and 7-Tesla magnetic resonance imaging as well as postmortem tissue analyses to assess blood vessel impairments in HD patients. Our findings were further investigated in the R6/2 mouse model using in situ cerebral perfusion, histological analysis, Western blotting, as well as transmission and scanning electron microscopy. RESULTS: We found mutant huntingtin protein (mHtt) aggregates to be present in all major components of the neurovascular unit of both R6/2 mice and HD patients. This was accompanied by an increase in blood vessel density, a reduction in blood vessel diameter, as well as BBB leakage in the striatum of R6/2 mice, which correlated with a reduced expression of tight junction-associated proteins and increased numbers of transcytotic vesicles, which occasionally contained mHtt aggregates. We confirmed the existence of similar vascular and BBB changes in HD patients. INTERPRETATION: Taken together, our results provide evidence for alterations in the cerebral vasculature in HD leading to BBB leakage, both in the R6/2 mouse model and in HD patients, a phenomenon that may, in turn, have important pathophysiological implications.


Assuntos
Vasos Sanguíneos/patologia , Barreira Hematoencefálica/patologia , Doença de Huntington/patologia , Neostriado/irrigação sanguínea , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Adulto , Idoso , Animais , Vasos Sanguíneos/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/patologia , Circulação Cerebrovascular/genética , Modelos Animais de Doenças , Feminino , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Neostriado/metabolismo , Neostriado/patologia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Tamanho do Órgão , Imagem de Perfusão , Proteínas de Junções Íntimas/metabolismo , Transcitose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA