Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e35342, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170265

RESUMO

Introduction: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. This study integrates common genetic association results from the latest ALS genome-wide association study (GWAS) summary statistics with functional genomic annotations with the aim of providing mechanistic insights into ALS risk loci, inferring drug repurposing opportunities, and enhancing prediction of ALS risk and clinical characteristics. Methods: Genes associated with ALS were identified using GWAS summary statistic methodology including SuSiE SNP-based fine-mapping, and transcriptome- and proteome-wide association study (TWAS/PWAS) analyses. Using several approaches, gene associations were integrated with the DrugTargetor drug-gene interaction database to identify drugs that could be repurposed for the treatment of ALS. Furthermore, ALS gene associations from TWAS were combined with observed blood expression in two external ALS case-control datasets to calculate polytranscriptomic scores and evaluate their utility for prediction of ALS risk and clinical characteristics, including site of onset, age at onset, and survival. Results: SNP-based fine-mapping, TWAS and PWAS identified 118 genes associated with ALS, with TWAS and PWAS providing novel mechanistic insights. Drug repurposing analyses identified six drugs significantly enriched for interactions with ALS associated genes, though directionality could not be determined. Additionally, drug class enrichment analysis showed gene signatures linked to calcium channel blockers may reduce ALS risk, whereas antiepileptic drugs may increase ALS risk. Across the two observed expression target samples, ALS polytranscriptomic scores significantly predicted ALS risk (R 2 = 5.1 %; p-value = 3.2 × 10-27) and clinical characteristics. Conclusions: Functionally-informed analyses of ALS GWAS summary statistics identified novel mechanistic insights into ALS aetiology, highlighted several therapeutic research avenues, and enabled statistically significant prediction of ALS risk.

2.
medRxiv ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36747854

RESUMO

Introduction: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. This study integrates the latest ALS genome-wide association study (GWAS) summary statistics with functional genomic annotations with the aim of providing mechanistic insights into ALS risk loci, inferring drug repurposing opportunities, and enhancing prediction of ALS risk and clinical characteristics. Methods: Genes associated with ALS were identified using GWAS summary statistic methodology including SuSiE SNP-based fine-mapping, and transcriptome- and proteome-wide association study (TWAS/PWAS) analyses. Using several approaches, gene associations were integrated with the DrugTargetor drug-gene interaction database to identify drugs that could be repurposed for the treatment of ALS. Furthermore, ALS gene associations from TWAS were combined with observed blood expression in two external ALS case-control datasets to calculate polytranscriptomic scores and evaluate their utility for prediction of ALS risk and clinical characteristics, including site of onset, age at onset, and survival. Results: SNP-based fine-mapping, TWAS and PWAS identified 117 genes associated with ALS, with TWAS and PWAS providing novel mechanistic insights. Drug repurposing analyses identified five drugs significantly enriched for interactions with ALS associated genes, with directional analyses highlighting α-glucosidase inhibitors may exacerbate ALS pathology. Additionally, drug class enrichment analysis showed calcium channel blockers may reduce ALS risk. Across the two observed expression target samples, ALS polytranscriptomic scores significantly predicted ALS risk (R2 = 4%; p-value = 2.1×10-21). Conclusions: Functionally-informed analyses of ALS GWAS summary statistics identified novel mechanistic insights into ALS aetiology, highlighted several therapeutic research avenues, and enabled statistically significant prediction of ALS risk.

3.
F1000Res ; 11: 530, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262335

RESUMO

In October 2021, 59 scientists from 14 countries and 13 U.S. states collaborated virtually in the Third Annual Baylor College of Medicine & DNANexus Structural Variation hackathon. The goal of the hackathon was to advance research on structural variants (SVs) by prototyping and iterating on open-source software. This led to nine hackathon projects focused on diverse genomics research interests, including various SV discovery and genotyping methods, SV sequence reconstruction, and clinically relevant structural variation, including SARS-CoV-2 variants. Repositories for the projects that participated in the hackathon are available at https://github.com/collaborativebioinformatics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Genômica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA