Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
J Sep Sci ; 47(16): e2400121, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39189598

RESUMO

In this study, we focused on the fluorous affinity acting among fluorine compounds, and then developed a new separation medium and evaluated their performance. We prepared the stationary phases for a column using silica gel-modified alkyl fluoride and investigated the characteristics of fluorous affinity by comparing them with a typical stationary phase, which does not contain fluorine, using high-performance liquid chromatography (HPLC). In HPLC measurements, we confirmed that while all non-fluorine compounds were not retained, retention of fluorine compounds increased as the number of fluorine increased with the stationary phase. It also revealed that the strength of fluorous affinity changes depending on the types of the organic solvent; the more polar the solvent, the stronger the effect. Additionally, the stationary phase was employed to compare the efficiency of our column with that of a commercially available column, Fluofix-II. The retention selectivity was almost the same, but the absolute retention strength was slightly higher on our column, indicating that the column is available for practical use.

2.
3.
RSC Adv ; 14(17): 12021-12029, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623302

RESUMO

Molecular imprinting technology has been widely studied as a technique to obtain molecular recognition by artificial means. Selecting functional monomers or polymerization conditions plays a key role to optimize molecularly imprinted polymer (MIP) synthesis. To date, there have been few reports well exploiting the effect of crosslinkers. Here, in this study, we synthesized the MIPs using poly(ethyleneglycol) dimethacrylate with different units of ethylene oxide (n = 1 to 23) as crosslinkers to observe the molecular recognition abilities. The MIPs were attached to the surface of mono-dispersed polymer beads. The obtained spherical MIPs and non-imprinted polymers were filled in a column for high performance liquid chromatography. Then the retention selectivity toward TR active substances was evaluated. The result revealed that the recognition ability did not improve regardless of the amount of ethylene oxide. With the crosslinker (n = 9), extremely high retention selectivity was observed, which provides at most around ten times as large imprinting factors in comparison with other MIPs. Interestingly, we obtained the highest recognition ability at around polymerization temperature from the evaluation of the recognition ability toward temperature shift using the MIP (n = 9). In general, hydrogen bonding based on MIPs provides high recognition ability at low temperature, whereas, this study indicates that the use of flexible crosslinkers may enable the synthesis of MIPs that precisely memorize the conditions of polymerization. Lastly, we simultaneously analyzed the TR active substances using the column filled with MIPs (n = 9). The result showed relatively linear correlation between the retention strength of each substance and phycological activity toward TR obtained by yeast assay. Therefore, we can conclude that an induced fit like the receptor emerged by constructing the flexible molecular recognition field.

4.
Anal Chem ; 95(38): 14502-14510, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37703188

RESUMO

We developed a novel purification medium of extracellular vesicles (EVs) by constructing a spongy-like monolithic polymer kneaded with TiO2 microparticles (TiO2-hybridized spongy monolith, TiO2-SPM). TiO2-SPM was applied in a solid-phase extraction format and enabled simple, rapid, and highly efficient purification of EVs. This is due to the high permeability caused by the continuous large flow-through pores of the monolithic skeleton (median pore size; 5.21 µm) and the specific interaction of embedded TiO2 with phospholipids of the lipid bilayers. Our method also excels in efficiency and comprehensiveness, collecting small EVs (SEVs) from the same volume of a cell culture medium 130.7 times more than typical ultracentrifugation and 4.3 times more than affinity purification targeting surface phosphatidylserine by magnetic beads. The purification method was completed within 1 h with simple operations and was directly applied to serum SEVs. Finally, we demonstrated flexibility toward the shape and size of our method by depleting EVs from fetal bovine serum (FBS), which is a necessary process to prevent contamination of culture cell-derived EVs with exogenous FBS-derived EVs. Our method will eliminate the tedious and difficult purification processes of EVs, providing a universal purification platform for EV-based drug discovery and pathological diagnosis.


Assuntos
Micropartículas Derivadas de Células , Vesículas Extracelulares , Bandagens , Polímeros
5.
Anal Chem ; 95(35): 13185-13190, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37610704

RESUMO

Since the outbreak of COVID-19, SARS-CoV-2, the infection has been spreading to date. The rate of false-negative result on a polymerase chain reaction (PCR) test considered the gold standard is roughly 20%. Therefore, its accuracy poses a question as well as needs improvement in the test. This study reports fabrication of a substrate of an anti-spike protein (AS)-immobilized porous material having selective adsorption toward a spike protein protruding from the surface of SARS-CoV-2. We have employed an organic polymer substrate called spongy monolith (SPM). The SPM has through-pores of about 10 µm and is adequate for flowing liquid containing virus particles. It also involves an epoxy group on the surface, enabling arbitrary proteins such as antibodies to immobilize. When antibodies of the spike protein toward receptor binding domain were immobilized, selective adsorption of the spike protein was observed. At the same time, when mixed analytes of spike proteins, lysozymes and amylases, were flowed into an AS-SPM, selective adsorption toward the spike proteins was observed. Then, SARS-CoV-2 was flowed into the BSA-SPM or AS-SPM, amounts of SARS-CoV-2 adsorption toward the AS-SPM were much larger compared to the ones toward the BSA-SPM. Furthermore, rotavirus was not adsorbed to the AS-SPM at all. These results show that the AS-SPM recognizes selectively the spike proteins of SARS-CoV-2 and may be possible applications for the purification and concentration of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Adsorção , COVID-19/diagnóstico , Glicoproteína da Espícula de Coronavírus , Anticorpos
6.
iScience ; 26(7): 107135, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37408688

RESUMO

As 3,3',5-triiodothyroacetic acid (TRIAC), a metabolite of thyroid hormones (THs), was previously detected in sewage effluent, we aimed to investigate exogenous TRIAC's potential for endocrine disruption. We administered either TRIAC or 3,3',5-triiodo-L-thyronine (LT3) to euthyroid mice and 6-propyl-2-thiouracil-induced hypothyroid mice. In hypothyroid mice, TRIAC administration suppressed the hypothalamus-pituitary-thyroid (HPT) axis and upregulated TH-responsive genes in the pituitary gland, the liver, and the heart. We observed that, unlike LT3, TRIAC administration did not upregulate cerebral TH-responsive genes. Measurement of TRIAC contents suggested that TRIAC was not efficiently trafficked into the cerebrum. By analyzing euthyroid mice, we found that cerebral TRIAC content did not increase despite TRIAC administration at higher concentrations, whereas serum levels and cerebral contents of THs were substantially decreased. Disruption by TRIAC is due to the additive effects of circulating endogenous THs being depleted via a negative feedback loop involving the HPT axis and heterogeneous distribution of TRIAC among different organs.

7.
J Chromatogr A ; 1705: 464171, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37385150

RESUMO

Particle packed columns used for liquid chromatography (LC) can suppress a column internal band broadening (hereinafter referred to as band broadening) by packing monodisperse particles homogenously. However, a quantitative evaluation for the effects of particle shape and packed state on band broadening needs to be more investigated. In this study, we fabricated a model of particle packed bed using microfluid LC columns that have pillar array structure prepared by microfabrication technology, evaluating how structural factors inside of a column affect its band broadening. At first, microfluid LC columns was prepared using Si-quartz glass (Si-Q column) for the optimization of LC measurement system. Through the evaluation, it showed 11.6 times higher pressure tolerance compared to that of PDMS-soda lime glass (PDMS-g column). Then, an optimized LC measurement system was constructed using a microfluidic LC column made of Si-Q column, and it was confirmed that the measurement error was small enough and the LC measurement could be performed with high repeatability. Additionally, the effect of a distribution of structural size on band broadening was evaluated. It was confirmed that wide distribution of the structural size provided large band broadening in actual measurements. Comparing two columns having different structural log-normal distributions of 0 and 0.22 showed approximately 1.8 times difference in both real LC measurement. Lastly, the relationship between packed state and band broadening was evaluated. As packed state, we employed void arrangement and structural arrangement in the columns. Different location arrangements of 50 and 100 µm pillar sizes afforded different band broadening. Well-homogenized array showed approximately two times worse band broadening compared to that of delocalized array. Based on these results, the developed packed bed of particles model was able to evaluate the relation between structural factors and band broadening.


Assuntos
Quartzo , Cromatografia Líquida , Tamanho da Partícula , Cromatografia Líquida de Alta Pressão/métodos
8.
Anal Chem ; 95(24): 9304-9313, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37230938

RESUMO

Halogen bonding is a highly directional interaction and a potential tool in functional material design through self-assembly. Herein, we describe two fundamental supramolecular strategies to synthesize molecularly imprinted polymers (MIPs) with halogen bonding-based molecular recognition sites. In the first method, the size of the σ-hole was increased by aromatic fluorine substitution of the template molecule, enhancing the halogen bonding in the supramolecule. The second method involved sandwiching hydrogen atoms of a template molecule between iodo substituents, which suppressed competing hydrogen bonding and enabled multiple recognition patterns, improving the selectivity. The interaction mode between the functional monomer and the templates was elucidated by 1H NMR, 13C NMR, X-ray absorption spectroscopy, and computational simulation. Finally, we succeeded in the effective chromatographic separation of diiodobenzene isomers on the uniformly sized MIPs prepared by multi-step swelling and polymerization. The MIPs selectively recognized halogenated thyroid hormones via halogen bonding and could be applied to screening endocrine disruptors.

9.
ACS Appl Mater Interfaces ; 15(19): 23931-23937, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37155349

RESUMO

Atomic layer deposition (ALD) offers excellent controllability of spatial uniformity, film thickness at the Angstrom level, and film composition even for high-aspect-ratio nanostructured surfaces, which are rarely attainable by other conventional deposition methodologies. Although ALD has been successfully applied to various substrates under open-top circumstances, the applicability of ALD to confined spaces has been limited because of the inherent difficulty of supplying precursors into confined spaces. Here, we propose a rational methodology to apply ALD growths to confined spaces (meter-long microtubes with an aspect ratio of up to 10 000). The ALD system, which can generate differential pressures to confined spaces, was newly developed. By using this ALD system, it is possible to deposit TiOx layers onto the inner surface of capillary tubes with a length of 1000 mm and an inner diameter of 100 µm with spatial deposition uniformity. Furthermore, we show the superior thermal and chemical robustness of TiOx-coated capillary microtubes for molecular separations when compared to conventional molecule-coated capillary microtubes. Thus, the present rational strategy of space-confined ALD offers a useful approach to design the chemical and physical properties of the inner surfaces of various confined spaces.

10.
Cancer Res Commun ; 3(1): 148-159, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36968222

RESUMO

Glioma stem cells (GSC) promote the malignancy of glioblastoma (GBM), the most lethal brain tumor. ERK5 belongs to the MAPK family. Here, we demonstrated that MAPK kinase 5 (MEK5)-ERK5-STAT3 pathway plays an essential role in maintaining GSC stemness and tumorigenicity by integrating genetic and pharmacologic manipulation and RNA sequencing analysis of clinical specimens. ERK5 was highly expressed and activated in GSCs. ERK5 silencing by short hairpin RNA in GSCs suppressed the self-renewal potential and GBM malignant growth concomitant with downregulation of STAT3 phosphorylation. Conversely, the activation of the MEK5-ERK5 pathway by introducing ERK5 or MEK5 resulted in increased GSC stemness. The introduction of STAT3 counteracted the GSC phenotypes by ERK5 silencing. Moreover, ERK5 expression and signaling are associated with poor prognosis in patients with GBM with high stem cell properties. Finally, pharmacologic inhibition of ERK5 significantly inhibited GSC self-renewal and GBM growth. Collectively, these findings uncover a crucial role of the MEK5-ERK5-STAT3 pathway in maintaining GSC phenotypes and GBM malignant growth, thereby providing a potential target for GSC-directed therapy. Significance: In this study, we demonstrated that MEK5-ERK5-STAT3 axis plays a critical role in maintaining stemness and tumorigenicity in GSCs by using genetic, pharmacologic, and bioinformatics tools, identifying the MEK5-ERK5-STAT3 axis as a potential target for GSC-directed therapy.


Assuntos
Glioblastoma , Glioma , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Glioma/genética , Glioblastoma/genética
11.
Biol Pharm Bull ; 46(2): 348-353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724964

RESUMO

Royal jelly (RJ), an essential food for the queen honeybee, has a variety of biological activities. Although RJ exerts preventive effects on various lifestyle-related diseases, such as osteoporosis and obesity, no study evaluated the effect of RJ on the development of osteoarthritis (OA), the most common degenerative joint disease. Here, we showed that daily oral administration of raw RJ significantly prevented OA development in vivo following surgically-induced knee joint instability in mice. Furthermore, in vitro experiments using chondrocytes, revealed that raw RJ significantly reduced the expression of inflammatory cytokines and enzymes critical for the degradation of the extracellular matrix (ECM). Similar results were observed after treatment with 10-hydroxy-2-decenoic acid, the most abundant and unique fatty acid in raw RJ. Our results suggest that oral supplementation with RJ would benefit the maintenance of joint health and prophylaxis against OA, possibly by suppressing the activity of inflammatory cytokines and ECM-degrading enzymes.


Assuntos
Ácidos Graxos , Osteoartrite , Animais , Abelhas , Camundongos , Ácidos Graxos/uso terapêutico , Ácidos Graxos/farmacologia , Citocinas/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/prevenção & controle , Suplementos Nutricionais
12.
Sci Rep ; 13(1): 1899, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732570

RESUMO

High-density lipoprotein (HDL) cholesterol efflux capacity (CEC), which is a conventional metric of HDL function, has been associated with coronary heart disease risk. However, the CEC assay requires cultured cells and takes several days to perform. We previously established a cell-free assay to evaluate cholesterol uptake capacity (CUC) as a novel measure of HDL functionality and demonstrated its utility in coronary risk stratification. To apply this concept clinically, we developed a rapid and sensitive assay system based on a chemiluminescent magnetic particle immunoassay. The system is fully automated, providing high reproducibility. Measurement of CUC in serum is completed within 20 min per sample without HDL isolation, a notably higher throughput than that of the conventional CEC assay. CUC decreased with myeloperoxidase-mediated oxidation of HDL or in the presence of N-ethylmaleimide, an inhibitor of lecithin: cholesterol acyltransferase (LCAT), whereas CUC was enhanced by the addition of recombinant LCAT. Furthermore, CUC correlated with CEC even after being normalized by ApoA1 concentration and was significantly associated with the requirement for revascularization due to the recurrence of coronary lesions. Therefore, our new assay system shows potential for the accurate measurement of CUC in serum and permits assessing cardiovascular health.


Assuntos
Doenças Cardiovasculares , Lipoproteínas HDL , Humanos , Doenças Cardiovasculares/diagnóstico , Reprodutibilidade dos Testes , HDL-Colesterol , Imunoensaio
13.
Anal Chem ; 94(51): 18025-18033, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36511577

RESUMO

Extracellular vesicles (EVs) are lipid bilayer vesicles that enclose various biomolecules. EVs hold promise as sensitive biomarkers to detect and monitor various diseases. However, they have heterogeneous molecular compositions. The compositions of EVs from identical donor cells obtained using the same purification methods may differ, which is a significant obstacle for elucidating objective biological functions. Herein, the potential of a novel lectin-based affinity chromatography (LAC) method to classify EVs based on their glycan structures is demonstrated. The proposed method utilizes a spongy-like monolithic polymer (spongy monolith, SPM), which consists of poly(ethylene-co-glycidyl methacrylate) with continuous micropores and allows an efficient in situ protein reaction with epoxy groups. Two distinct lectins with different specificities, Sambucus sieboldiana agglutinin and concanavalin A, are effectively immobilized on SPM without impacting the binding activity. Moreover, high recovery rates of liposomal nanoparticles as a model of EVs are achieved due to the large flow-through pores (>10 µm) of SPM compared to a typical agarose gel. Finally, lectin-immobilized SPMs are employed to classify EVs based on the surface glycan structures and demonstrate different subpopulations by proteome profiling. This is the first approach to clarify the variation of protein contents in EVs by the difference of surface glycans via lectin immobilized media.


Assuntos
Vesículas Extracelulares , Lectinas , Lectinas/metabolismo , Concanavalina A/química , Cromatografia de Afinidade/métodos , Vesículas Extracelulares/metabolismo , Polissacarídeos/metabolismo
14.
ACS Appl Bio Mater ; 5(11): 5210-5217, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36260820

RESUMO

To date, an identification protocol for endocrine disruptors that bind to the thyroid hormone receptor (TR) has not been established. A method for screening and identifying TR-binding substances is highly required due to the existence of unknown TR-binding substances from the environment. Here, we conceived a chromatographic method using a molecularly imprinted polymer (MIP) to create a novel screening protocol for the endocrine disruptors. A receptor-imitating MIP was prepared using N-acetylthyroxine (AcetylT4) and 4-vinylpyridine as a pseudo-template and a functional monomer, respectively, based on the existing molecular recognition mechanism of the TR. The receptor-imitating MIP provided molecular recognition ability for all the TR-binding substances that were employed in this study. The prepared MIPs were packed into a high-performance liquid chromatography column for the simultaneous analysis of TR-binding and non-binding substances. The former was strongly retained, while the latter was not. The presence or absence of TR-binding/non-binding activity resulted in successful dichotomous separation. Additionally, the surface imprinting technique was applied to improve the separation performance of the MIP packing material. MIP-coated uniformly sized silica-based particles of 5 µm were successfully prepared, and the MIP-coated silica column enabled more efficient dichotomous separation of TR-binding and non-binding substances.


Assuntos
Disruptores Endócrinos , Impressão Molecular , Impressão Molecular/métodos , Polímeros Molecularmente Impressos , Polímeros/química , Glândula Tireoide , Dióxido de Silício/química , Hormônios
15.
J Cell Physiol ; 237(11): 4292-4302, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36161979

RESUMO

Scoliosis, usually diagnosed in childhood and early adolescence, is an abnormal lateral curvature of the spine. L-type amino acid transporter 1 (LAT1), encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types. We previously demonstrated the pivotal role of LAT1 on bone homeostasis in mice, and the expression of LAT1/SLC7A5 in vertebral cartilage of pediatric scoliosis patients; however, its role in chondrocytes on spinal homeostasis and implications regarding the underlying mechanisms during the onset and progression of scoliosis, remain unknown. Here, we identified LAT1 in mouse chondrocytes as an important regulator of postnatal spinal homeostasis. Conditional inactivation of LAT1 in chondrocytes resulted in a postnatal-onset severe thoracic scoliosis at the early adolescent stage with normal embryonic spinal development. Histological analyses revealed that Slc7a5 deletion in chondrocytes led to general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. Furthermore, loss of Slc7a5 in chondrocytes activated the general amino acid control (GAAC) pathway but inactivated the mechanistic target of rapamycin complex 1 (mTORC1) pathway in the vertebrae. The spinal deformity in Slc7a5-deficient mice was corrected by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway. These findings suggest that the LAT1-GAAC pathway in chondrocytes plays a critical role in the maintenance of proper spinal homeostasis by modulating cell proliferation and survivability.


Assuntos
Transportador 1 de Aminoácidos Neutros Grandes , Escoliose , Animais , Camundongos , Aminoácidos , Condrócitos/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Escoliose/genética , Escoliose/metabolismo , Escoliose/patologia , Modelos Animais de Doenças
16.
Nanoscale Adv ; 4(6): 1649-1658, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36134362

RESUMO

Herein, we explore the hidden molecular recognition abilities of ZnO nanowires uniformly grown on the inner surface of an open tubular fused silica capillary via liquid chromatography. Chromatographic evaluation revealed that ZnO nanowires showed a stronger intermolecular interaction with phenylphosphoric acid than any other monosubstituted benzene. Furthermore, ZnO nanowires specifically recognized the phosphate groups present in nucleotides even in the aqueous mobile phase, and the intermolecular interaction increased with the number of phosphate groups. This discrimination of phosphate groups in nucleotides was unique to the rich (101̄0) m-plane of ZnO nanowires with a moderate hydrophilicity and negative charge. The discrimination could be evidenced by the changes in the infrared bands of the phosphate groups on nucleotides on ZnO nanowires. Finally, as an application of the molecular recognition, nucleotides were separated by the number of phosphate groups, utilizing optimized gradient elution on ZnO nanowire column. Thus, the present results elucidate the unique and versatile molecular selectivity of well-known ZnO nanostructures for the capture and separation of biomolecules.

17.
Environ Sci Technol ; 56(19): 13709-13718, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36100216

RESUMO

3,3',5-Triiodothyroacetic acid (TRIAC) was identified as a major contributor to the activity of thyroid hormone receptor (TR) agonists in environmental water. TRIAC contributed 60-148% of the TR-agonist activity in effluents from sewage treatment plants (STPs). Meanwhile, the contributions of 3,5,3'-triiodothyronine (T3), 3,3',5,5'-tetraiodothyronine (T4), and analogues were <1%. TRIAC concentrations in the range of 0.30-4.2 ng/L are likely enough to cause disruption of the thyroid system in living aquatic organisms. The origin of TRIAC in the STP effluents was investigated by analyzing both STP influents and effluents. Relatively high concentrations of T3 and T4 (2.5 and 6.3 ng/L, respectively) were found only in the influents. TRIAC was identified only in the effluents. These findings suggested that T3 and T4 in STP influents were potentially converted into TRIAC during activated sludge treatment or by other means. The evaluation of TRIAC at relevant environmental concentrations by in vivo assays and an appropriate treatment to reduce the TR activity in sewage are needed.


Assuntos
Esgotos , Tri-Iodotironina , Cromatografia Líquida , Receptores dos Hormônios Tireóideos , Esgotos/química , Espectrometria de Massas em Tandem , Glândula Tireoide , Água
18.
J Mater Chem B ; 10(35): 6800-6807, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35708055

RESUMO

Protein imprinted hydrogel, which is one form of protein imprinted molecularly imprinted polymer (MIP), is an important material for enzyme-linked immunosorbent assay, drug delivery materials, sensors, separation materials, etc. To obtain a high protein recognition performance, it is essential to optimize the involved compositions. This work studies a copoly(poly(ethylene glycol) diacrylate/poly(ethylene glycol) acrylate), in short copoly(PEGDA/PEGA), based MIP hydrogel targeting cytochrome c recognition. The presented MIP hydrogel employs water-soluble PEGDA as the crosslinker, PEGA as the side chain, and sodium allylsulfonate as the functional monomer. The fabricated MIP hydrogels and non-imprinted polymer (NIP) hydrogels were treated as adsorbents for protein adsorption. Efforts were made targeting an optimized recognition performance. Factors including the template to functional monomer ratio, crosslinker length, crosslinker ratio of PEGDA/PEGA, ionic strength in the adsorption test, and presence of acidic modifier in the adsorption test were investigated. The results showed that a higher template to functional monomer ratio, a shorter crosslinker, and additional NaCl (20 mM) in the adsorption solvent provided a higher imprinting factor. A lower crosslinker ratio of no less than 6/4 offered a faster template removal; at the same time, the imprinting factor remained at a quite high level. Highly specific recognition of cytochrome c was realized with the presence of an optimized amount of HCl (10 mM) as an acidic modifier.


Assuntos
Impressão Molecular , Acrilatos , Citocromos c , Hidrogéis , Impressão Molecular/métodos , Polímeros Molecularmente Impressos , Polietilenoglicóis , Polímeros/química , Sódio , Cloreto de Sódio , Solventes/química , Água
19.
Data Brief ; 42: 108303, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35664659

RESUMO

The human thyroid receptor (hTR)-antagonist activities of 691 compounds were evaluated using a yeast two-hybrid assay with Saccharomyces cerevisiae Y190 introduced hTRα and coactivator. In parallel, those YTOX tests were conducted to evaluate whether those compounds affected either antagonism or toxicity. This is the first report that focuses on the hTR-antagonist activity of many chemical compounds suspected to be endocrine disruptor. In this study, 46 compounds exhibited antagonist activity at 50% of the maximum activity (IC × 50) within 11-9940 nM. In particular, 10,10-Oxybisphenoxarsine, triphenyltin fluoride, triphenyltin hydroxide, and chlorothalonil had strong hTR-antagonist activities. This knowledge gained from the present study will boost chemical regulation strategies for human and wildlife health.

20.
J Mater Chem B ; 10(35): 6664-6672, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35666468

RESUMO

Molecularly imprinted polymers (MIPs) are superior materials with a molecular recognition ability that apply to various applications. In order to get high specificity recognition for target molecules, selecting polymerization conditions, which provide high interaction with the target template, is crucial. However, it requires time and labor to find the optimal polymerization composition, especially for large biomolecules. The advance in the microfluidic field enables researchers to control the flow rate and divide solutions based on the design of microfluidic devices for acquiring multivariate data by simultaneously preparing samples with different conditions. In this work, we fabricated microfluidic dispensing devices with different flow path widths that can give the solution of different flow rates. The accuracy of the flow rate was compared with the simulation value. As a result, the flow rate data showed almost the same data as the simulation value, and the dispensing volume ratio showed high reproducibility. Besides, the multivariate data from mixing the fluorescent molecule and protein solutions prepared by the dispensing device and a micropipette showed no significant difference with existing laboratory equipment. Finally, the dispensing device was used for preparing MIP hydrogels for lysozyme as a template protein. We successfully acquired multivariate data on the adsorption capacity of proteins, as a result, the hydrogels provided a high imprinting factor and adsorption specificity toward lysozymes.


Assuntos
Impressão Molecular , Hidrogéis , Dispositivos Lab-On-A-Chip , Microfluídica , Polímeros Molecularmente Impressos , Muramidase , Polímeros , Proteínas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA