Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxins (Basel) ; 13(10)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34679004

RESUMO

Cyanotoxins can be found in water and air during cyanobacterial harmful algal blooms (cHABs) in lakes and rivers. Therefore, it is very important to monitor their potential uptake by animals and humans as well as their health effects and distribution in affected organs. Herein, the distribution of hepatotoxic peptide microcystin-LR (MC-LR) is investigated in liver tissues of mice gavaged with this most common MC congener. Preliminary matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging experiments performed using a non-automated MALDI matrix deposition device and a MALDI-time-of-flight (TOF) mass spectrometer yielded ambiguous results in terms of MC-LR distribution in liver samples obtained from MC-LR-gavaged mice. The tissue preparation for MALDI-MS imaging was improved by using an automated sprayer for matrix deposition, and liver sections were imaged using an Nd:YAG MALDI laser coupled to a 15 Tesla Fourier-transform ion cyclotron resonance (FT-ICR)-mass spectrometer. MALDI-FT-ICR-MS imaging provided unambiguous detection of protonated MC-LR (calculated m/z 995.5560, z = +1) and the sodium adduct of MC-LR (m/z 1017.5380, z = +1) in liver sections from gavaged mice with great mass accuracy and ultra-high mass resolution. Since both covalently bound and free MC-LR can be found in liver of mice exposed to this toxin, the present results indicate that the distribution of free microcystins in tissue sections from affected organs, such as liver, can be monitored with high-resolution MALDI-MS imaging.


Assuntos
Fígado/química , Toxinas Marinhas/metabolismo , Microcistinas/metabolismo , Animais , Fígado/metabolismo , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
Toxins (Basel) ; 12(4)2020 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325806

RESUMO

A method was developed to extract and quantify microcystins (MCs) from mouse liver with limits of quantification (LOQs) lower than previously reported. MCs were extracted from 40-mg liver samples using 85:15 (v:v) CH3CN:H2O containing 200 mM ZnSO4 and 1% formic acid. Solid-phase extraction with a C18 cartridge was used for sample cleanup. MCs were detected and quantified using HPLC-orbitrap-MS with simultaneous MS/MS detection of the 135.08 m/z fragment from the conserved Adda amino acid for structural confirmation. The method was used to extract six MCs (MC-LR, MC-RR, MC-YR, MC-LA, MC-LF, and MC-LW) from spiked liver tissue and the MC-LR cysteine adduct (MC-LR-Cys) created by the glutathione detoxification pathway. Matrix-matched internal standard calibration curves were constructed for each MC (R2 ≥ 0.993), with LOQs between 0.25 ng per g of liver tissue (ng/g) and 0.75 ng/g for MC-LR, MC-RR, MC-YR, MC-LA, and MC-LR-Cys, and 2.5 ng/g for MC-LF and MC-LW. The protocol was applied to extract and quantify MC-LR and MC-LR-Cys from the liver of mice that had been gavaged with 50 µg or 100 µg of MC-LR per kg bodyweight and were euthanized 2 h, 4 h, or 48 h after final gavage. C57Bl/6J (wild type, control) and Leprdb/J (experiment) mice were used as a model to study non-alcoholic fatty liver disease. The Leprdb/J mice were relatively inefficient in metabolizing MC-LR into MC-LR-Cys, which is an important defense mechanism against MC-LR exposure. Trends were also observed as a function of MC-LR gavage amount and time between final MC-LR gavage and euthanasia/organ harvest.


Assuntos
Fígado/química , Microcistinas/análise , Animais , Cromatografia Líquida , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microcistinas/farmacocinética , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA