Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
2.
Immunol Rev ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980198
3.
Nat Immunol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009838

RESUMO

Interleukin-17 (IL-17)-producing helper T (TH17) cells are heterogenous and consist of nonpathogenic TH17 (npTH17) cells that contribute to tissue homeostasis and pathogenic TH17 (pTH17) cells that mediate tissue inflammation. Here, we characterize regulatory pathways underlying TH17 heterogeneity and discover substantial differences in the chromatin landscape of npTH17 and pTH17 cells both in vitro and in vivo. Compared to other CD4+ T cell subsets, npTH17 cells share accessible chromatin configurations with regulatory T cells, whereas pTH17 cells exhibit features of both npTH17 cells and type 1 helper T (TH1) cells. Integrating single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq), we infer self-reinforcing and mutually exclusive regulatory networks controlling different cell states and predicted transcription factors regulating TH17 cell pathogenicity. We validate that BACH2 promotes immunomodulatory npTH17 programs and restrains proinflammatory TH1-like programs in TH17 cells in vitro and in vivo. Furthermore, human genetics implicate BACH2 in multiple sclerosis. Overall, our work identifies regulators of TH17 heterogeneity as potential targets to mitigate autoimmunity.

4.
J Clin Invest ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916965

RESUMO

Leukemia relapse is a major cause of death after allogeneic hematopoietic cell transplantation (allo-HCT). We tested the potential of targeting TIM-3 for improving graft-versus-leukemia (GVL) effects. We observed differential expression of TIM-3 ligands when hematopoietic stem cells overexpressed certain oncogenic-driver mutations. Anti-TIM-3 Ab-treatment improved survival of mice bearing leukemia with oncogene-induced TIM-3 ligand expression. Conversely, leukemia cells with low ligand expression were anti-TIM-3 treatment-resistant. In vitro, TIM-3 blockade or genetic deletion in CD8+ T cells (Tc) enhanced Tc activation, proliferation and IFN-γ production while enhancing GVL effects, preventing Tc exhaustion and improving Tc cytotoxicity and glycolysis in vivo. Conversely, TIM-3 deletion in myeloid cells did not affect allogeneic Tc proliferation and activation in vitro, suggesting that anti-TIM-3-treatment-mediated GVL effects are Tc-induced. In contrast to anti-PD-1 and anti-CTLA-4-treatment, anti-TIM-3-treatment did not enhance acute graft-versus-host-disease (aGVHD). TIM-3 and its ligands were frequently expressed in acute myeloid leukemia (AML) cells of patients with post-allo-HCT relapse. We deciphered the connection between oncogenic mutations found in AML and TIM-3 ligands expression and identify anti-TIM-3-treatment as a strategy to enhance GVL effects via metabolic and transcriptional Tc-reprogramming, without exacerbation of aGVHD. Our findings support clinical testing of anti-TIM-3 Abs in patients with AML relapse post-allo-HCT.

5.
Front Immunol ; 15: 1360219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745667

RESUMO

Background: Regulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS. Methods: FACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis. Results: TIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells. Conclusion: These findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.


Assuntos
Linfócitos B Reguladores , Receptor Celular 1 do Vírus da Hepatite A , Receptores Imunológicos , Humanos , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Linfócitos B Reguladores/imunologia , Linfócitos B Reguladores/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/genética , Feminino , Masculino , Adulto , Células B de Memória/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/metabolismo , Citocinas/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Ativação Linfocitária/imunologia , Pessoa de Meia-Idade , Células Cultivadas , Diferenciação Celular/imunologia , Memória Imunológica
6.
Cell ; 187(8): 2010-2028.e30, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38569542

RESUMO

Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.


Assuntos
Colite Ulcerativa , Colite , Animais , Humanos , Camundongos , Colite/metabolismo , Colite/patologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Hibridização in Situ Fluorescente/métodos , Inflamação/metabolismo , Inflamação/patologia , Comunicação Celular , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia
7.
Front Immunol ; 15: 1331217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686385

RESUMO

Interleukin (IL)-23, an IL-12 cytokine family member, is a hierarchically dominant regulatory cytokine in a cluster of immune-mediated inflammatory diseases (IMIDs), including psoriasis, psoriatic arthritis, and inflammatory bowel disease. We review IL-23 biology, IL-23 signaling in IMIDs, and the effect of IL-23 inhibition in treating these diseases. We propose studies to advance IL-23 biology and unravel differences in response to anti-IL-23 therapy. Experimental evidence generated from these investigations could establish a novel molecular ontology centered around IL-23-driven diseases, improve upon current approaches to treating IMIDs with IL-23 inhibition, and ultimately facilitate optimal identification of patients and, thereby, outcomes.


Assuntos
Interleucina-23 , Animais , Humanos , Artrite Psoriásica/imunologia , Artrite Psoriásica/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/terapia , Interleucina-23/antagonistas & inibidores , Interleucina-23/imunologia , Interleucina-23/metabolismo , Psoríase/imunologia , Psoríase/tratamento farmacológico , Transdução de Sinais
8.
Sci Immunol ; 9(93): eadf2223, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457514

RESUMO

T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) is an important immune checkpoint molecule initially identified as a marker of IFN-γ-producing CD4+ and CD8+ T cells. Since then, our understanding of its role in immune responses has significantly expanded. Here, we review emerging evidence demonstrating unexpected roles for TIM-3 as a key regulator of myeloid cell function, in addition to recent work establishing TIM-3 as a delineator of terminal T cell exhaustion, thereby positioning TIM-3 at the interface between fatigued immune responses and reinvigoration. We share our perspective on the antagonism between TIM-3 and T cell stemness, discussing both cell-intrinsic and cell-extrinsic mechanisms underlying this relationship. Looking forward, we discuss approaches to decipher the underlying mechanisms by which TIM-3 regulates stemness, which has remarkable potential for the treatment of cancer, autoimmunity, and autoinflammation.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Células Mieloides , Exaustão das Células T
9.
Cell ; 187(6): 1508-1526.e16, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38442711

RESUMO

Dorsal root ganglia (DRG) somatosensory neurons detect mechanical, thermal, and chemical stimuli acting on the body. Achieving a holistic view of how different DRG neuron subtypes relay neural signals from the periphery to the CNS has been challenging with existing tools. Here, we develop and curate a mouse genetic toolkit that allows for interrogating the properties and functions of distinct cutaneous targeting DRG neuron subtypes. These tools have enabled a broad morphological analysis, which revealed distinct cutaneous axon arborization areas and branching patterns of the transcriptionally distinct DRG neuron subtypes. Moreover, in vivo physiological analysis revealed that each subtype has a distinct threshold and range of responses to mechanical and/or thermal stimuli. These findings support a model in which morphologically and physiologically distinct cutaneous DRG sensory neuron subtypes tile mechanical and thermal stimulus space to collectively encode a wide range of natural stimuli.


Assuntos
Gânglios Espinais , Células Receptoras Sensoriais , Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Gânglios Espinais/citologia , Células Receptoras Sensoriais/citologia , Pele/inervação
10.
Immunity ; 57(2): 206-222, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38354701

RESUMO

LAG-3, TIM-3, and TIGIT comprise the next generation of immune checkpoint receptors being harnessed in the clinic. Although initially studied for their roles in restraining T cell responses, intense investigation over the last several years has started to pinpoint the unique functions of these molecules in other immune cell types. Understanding the distinct processes that these receptors regulate across immune cells and tissues will inform the clinical development and application of therapies that either antagonize or agonize these receptors, as well as the profile of potential tissue toxicity associated with their targeting. Here, we discuss the distinct functions of LAG-3, TIM-3, and TIGIT, including their contributions to the regulation of immune cells beyond T cells, their roles in disease, and the implications for their targeting in the clinic.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Receptores Imunológicos , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptores Imunológicos/metabolismo , Linfócitos T
13.
J Immunol ; 211(12): 1762-1766, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37909848

RESUMO

Th1 cells are critical in experimental autoimmune encephalomyelitis (EAE). Serine protease inhibitor clade E1 (Serpine1) has been posited as an inhibitor of IFN-γ from T cells, although its role in autoimmunity remains unclear. In this study, we show that Serpine1 knockout (KO) mice develop EAE of enhanced severity relative to wild-type (WT) controls. Serpine1 overexpression represses Th1 cell cytokine production and pathogenicity, whereas Serpine1-KO:2D2 Th1 cells transfer EAE of increased severity in comparison with WT 2D2 Th1 cells. Notably, polarized Serpine1-KO Th1 cells display delayed expression of the Th1-specific inhibitory receptor, Tim-3 (T cell Ig and mucin-domain containing-3). Serpine1-KO:Tim-3-Tg Th1 cells, which transgenically overexpress Tim-3, showed increased expression of IFN-γ and reduced expression of the checkpoint molecules Lag-3 and PD-1 relative to WT Tim-3-Tg counterparts. Furthermore, Serpine1 deficiency restored the EAE phenotype of Tim-3-Tg mice that normally develop mild disease. Taken together, we identify Serpine1 as a negative regulator of Th1 cells.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Animais , Células Th1 , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Inibidores de Serina Proteinase , Camundongos Knockout , Camundongos Endogâmicos C57BL , Células Th17
14.
bioRxiv ; 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37790513

RESUMO

B cells can express pro-inflammatory cytokines that promote a wide variety of immune responses. Here we show that B cells expressing the phosphatidylserine receptor TIM-4, preferentially express not only IL-17A, but also IL-22, IL-6, and GM-CSF - a collection of cytokines reminiscent of pathogenic Th17 cells. Expression of this proinflammatory module requires B cell expression of IL-23R, RORγt and IL-17. IL-17 expressed by TIM-4+ B cells not only enhances the severity of experimental autoimmune encephalomyelitis (EAE) and promotes allograft rejection, but also acts in an autocrine manner to prevent their conversion into IL-10-expressing B cells with regulatory function. Thus, IL-17 acts as an inflammatory mediator and also enforces the proinflammatory activity of TIM-4+ B cells. TIM-4 serves as a broad marker for effector B cells (Beff) that will allow the study of the signals regulating their differentiation and expression of their effector molecules.

15.
Nat Immunol ; 24(11): 1908-1920, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828379

RESUMO

Co-inhibitory and checkpoint molecules suppress T cell function in the tumor microenvironment, thereby rendering T cells dysfunctional. Although immune checkpoint blockade is a successful treatment option for multiple human cancers, severe autoimmune-like adverse effects can limit its application. Here, we show that the gene encoding peptidoglycan recognition protein 1 (PGLYRP1) is highly coexpressed with genes encoding co-inhibitory molecules, indicating that it might be a promising target for cancer immunotherapy. Genetic deletion of Pglyrp1 in mice led to decreased tumor growth and an increased activation/effector phenotype in CD8+ T cells, suggesting an inhibitory function of PGLYRP1 in CD8+ T cells. Surprisingly, genetic deletion of Pglyrp1 protected against the development of experimental autoimmune encephalomyelitis, a model of autoimmune disease in the central nervous system. PGLYRP1-deficient myeloid cells had a defect in antigen presentation and T cell activation, indicating that PGLYRP1 might function as a proinflammatory molecule in myeloid cells during autoimmunity. These results highlight PGLYRP1 as a promising target for immunotherapy that, when targeted, elicits a potent antitumor immune response while protecting against some forms of tissue inflammation and autoimmunity.


Assuntos
Encefalomielite Autoimune Experimental , Neoplasias , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/genética , Imunoterapia , Inflamação , Doenças Neuroinflamatórias , Microambiente Tumoral
16.
Nature ; 620(7975): 881-889, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558878

RESUMO

Dendritic cells (DCs) have a role in the development and activation of self-reactive pathogenic T cells1,2. Genetic variants that are associated with the function of DCs have been linked to autoimmune disorders3,4, and DCs are therefore attractive therapeutic targets for such diseases. However, developing DC-targeted therapies for autoimmunity requires identification of the mechanisms that regulate DC function. Here, using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies, we identify a regulatory loop of negative feedback that operates in DCs to limit immunopathology. Specifically, we find that lactate, produced by activated DCs and other immune cells, boosts the expression of NDUFA4L2 through a mechanism mediated by hypoxia-inducible factor 1α (HIF-1α). NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs that are involved in the control of pathogenic autoimmune T cells. We also engineer a probiotic that produces lactate and suppresses T cell autoimmunity through the activation of HIF-1α-NDUFA4L2 signalling in DCs. In summary, we identify an immunometabolic pathway that regulates DC function, and develop a synthetic probiotic for its therapeutic activation.


Assuntos
Doenças Autoimunes , Sistema Nervoso Central , Células Dendríticas , Subunidade alfa do Fator 1 Induzível por Hipóxia , Ácido Láctico , Humanos , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/prevenção & controle , Autoimunidade , Sistema Nervoso Central/citologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácido Láctico/metabolismo , Probióticos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia , Retroalimentação Fisiológica , Lactase/genética , Lactase/metabolismo , Análise de Célula Única
18.
Nature ; 619(7969): 348-356, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344597

RESUMO

The role of B cells in anti-tumour immunity is still debated and, accordingly, immunotherapies have focused on targeting T and natural killer cells to inhibit tumour growth1,2. Here, using high-throughput flow cytometry as well as bulk and single-cell RNA-sequencing and B-cell-receptor-sequencing analysis of B cells temporally during B16F10 melanoma growth, we identified a subset of B cells that expands specifically in the draining lymph node over time in tumour-bearing mice. The expanding B cell subset expresses the cell surface molecule T cell immunoglobulin and mucin domain 1 (TIM-1, encoded by Havcr1) and a unique transcriptional signature, including multiple co-inhibitory molecules such as PD-1, TIM-3, TIGIT and LAG-3. Although conditional deletion of these co-inhibitory molecules on B cells had little or no effect on tumour burden, selective deletion of Havcr1 in B cells both substantially inhibited tumour growth and enhanced effector T cell responses. Loss of TIM-1 enhanced the type 1 interferon response in B cells, which augmented B cell activation and increased antigen presentation and co-stimulation, resulting in increased expansion of tumour-specific effector T cells. Our results demonstrate that manipulation of TIM-1-expressing B cells enables engagement of the second arm of adaptive immunity to promote anti-tumour immunity and inhibit tumour growth.


Assuntos
Linfócitos B , Melanoma , Animais , Camundongos , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Ativação Linfocitária , Melanoma/imunologia , Melanoma/patologia , Melanoma/prevenção & controle , Linfócitos T/citologia , Linfócitos T/imunologia , Citometria de Fluxo , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Linfonodos/citologia , Linfonodos/imunologia , Apresentação de Antígeno , Receptores de Antígenos de Linfócitos B/genética , Análise da Expressão Gênica de Célula Única , Carga Tumoral , Interferon Tipo I
19.
bioRxiv ; 2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37131664

RESUMO

Mechanical and thermal stimuli acting on the skin are detected by morphologically and physiologically distinct sensory neurons of the dorsal root ganglia (DRG). Achieving a holistic view of how this diverse neuronal population relays sensory information from the skin to the central nervous system (CNS) has been challenging with existing tools. Here, we used transcriptomic datasets of the mouse DRG to guide development and curation of a genetic toolkit to interrogate transcriptionally defined DRG neuron subtypes. Morphological analysis revealed unique cutaneous axon arborization areas and branching patterns of each subtype. Physiological analysis showed that subtypes exhibit distinct thresholds and ranges of responses to mechanical and/or thermal stimuli. The somatosensory neuron toolbox thus enables comprehensive phenotyping of most principal sensory neuron subtypes. Moreover, our findings support a population coding scheme in which the activation thresholds of morphologically and physiologically distinct cutaneous DRG neuron subtypes tile multiple dimensions of stimulus space.

20.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37214800

RESUMO

Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used MERFISH to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations; charted their spatial organization; and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA