Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Genet Mol Biol ; 47(2): e20230030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626572

RESUMO

Genomic effect variants associated with survival and protection against complex diseases vary between populations due to microevolutionary processes. The aim of this study was to analyse diversity and distribution of effect variants in a context of potential positive selection. In total, 475 individuals of Lithuanian origin were genotyped using high-throughput scanning and/or sequencing technologies. Allele frequency analysis for the pre-selected effect variants was performed using the catalogue of single nucleotide polymorphisms. Comparison of the pre-selected effect variants with variants in primate species was carried out to ascertain which allele was derived and potentially of protective nature. Recent positive selection analysis was performed to verify this protective effect. Four variants having significantly different frequencies compared to European populations were identified while two other variants reached borderline significance. Effect variant in SLC30A8 gene may potentially protect against type 2 diabetes. The existing paradox of high rates of type 2 diabetes in the Lithuanian population and the relatively high frequencies of potentially protective genome variants against it indicate a lack of knowledge about the interactions between environmental factors, regulatory regions, and other genome variation. Identification of effect variants is a step towards better understanding of the microevolutionary processes, etiopathogenetic mechanisms, and personalised medicine.

2.
Infect Genet Evol ; 116: 105528, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977419

RESUMO

Pathogens and infectious diseases have imposed exceptionally strong selective pressure on ancient and modern human genomes and contributed to the current variation in many genes. There is evidence that modern humans acquired immune variants through interbreeding with ancient hominins, but the impact of such variants on human traits is not fully understood. The main objectives of this research were to infer the genetic signatures of positive selection that may be involved in adaptation to infectious diseases and to investigate the function of Neanderthal alleles identified within a set of 50 Lithuanian genomes. Introgressed regions were identified using the machine learning tool ArchIE. Recent positive selection signatures were analysed using iHS. We detected high-scoring signals of positive selection at innate immunity genes (EMB, PARP8, HLAC, and CDSN) and evaluated their interactions with the structural proteins of pathogens. Interactions with human immunodeficiency virus (HIV) 1 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were identified. Overall, genomic regions introgressed from Neanderthals were shown to be enriched in genes related to immunity, keratinocyte differentiation, and sensory perception.


Assuntos
Doenças Transmissíveis , Homem de Neandertal , Humanos , Animais , Evolução Molecular , Homem de Neandertal/genética , Genômica , Genoma Humano , Doenças Transmissíveis/genética , Seleção Genética
3.
Medicina (Kaunas) ; 59(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37512036

RESUMO

Background and Objectives: Heterozygous pathogenic variants in the MED13L gene cause impaired intellectual development and distinctive facial features with or without cardiac defects (MIM #616789). This complex neurodevelopmental disorder is characterised by various phenotypic features, including plagiocephaly, strabismus, clubfoot, poor speech, and developmental delay. The aim of this study was to evaluate the clinical significance and consequences of a novel heterozygous intragenic MED13L deletion in a proband with clinical features of a MED13L-related disorder through extensive clinical, molecular, and functional characterisation. Materials and Methods: Combined comparative genomic hybridisation and single-nucleotide polymorphism array (SNP-CGH) was used to identify the changes in the proband's gDNA sequence (DECIPHER #430183). Intragenic MED13L deletion was specified via quantitative polymerase chain reaction (qPCR) and Sanger sequencing of the proband's cDNA sample. Western blot and bioinformatics analyses were used to investigate the consequences of this copy number variant (CNV) at the protein level. CRISPR-Cas9 technology was used for a MED13L-gene-silencing experiment in a culture of the control individual's skin fibroblasts. After the MED13L-gene-editing experiment, subsequent functional fibroblast culture analyses were performed. Results: The analysis of the proband's cDNA sample allowed for specifying the regions of the breakpoints and identifying the heterozygous deletion that spanned exons 3 to 10 of MED13L, which has not been reported previously. In silico, the deletion was predicted to result in a truncated protein NP_056150.1:p.(Val104Glyfs*5), partly altering the Med13_N domain and losing the MedPIWI and Med13_C domains. After MED13L gene editing was performed, reduced cell viability; an accelerated aging process; and inhibition of the RB1, E2F1, and CCNC gene expression were found to exist. Conclusions: Based on these findings, heterozygous intragenic 12q24.21 deletion in the affected individual resulted in MED13L haploinsufficiency due to the premature termination of protein translation, therefore leading to MED13L haploinsufficiency syndrome.


Assuntos
Haploinsuficiência , Deficiência Intelectual , Humanos , Haploinsuficiência/genética , Deficiência Intelectual/genética , Fenótipo , DNA Complementar , Síndrome , Complexo Mediador/genética
4.
Sci Rep ; 13(1): 11941, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488273

RESUMO

Differences in the relative fitness of genomic variants are foundational, without these, neither natural selection nor adaption can exist. This research analyzed two microevolutionary forces, mutations, and positive selection, using whole genome sequencing data from Lithuanians across three generations: newborns (generation I), their parents (generation II), 60 years old Lithuanians, and the root ancestors (generation III). The main objective was to determine the frequency of mutations under selection in modern humans and how allele frequencies change across generations. Our results show that going through all the landscapes of the relative fitness on each chromosome, the general relative fitness background pattern remains the same in analysed generations. However, the tendency of relative fitness to decrease, in general, is noted. We hypothesize that the de novo genome variants or genome variants with a very low frequency that formed in the previous generation did not have time to be as affected by natural selection, thus, in the following generation, the force of natural selection acting on them is greater and their cumulative relative fitness also decreases. The strong natural selection pressure on the genetic regions that encode the NEGR1 and PTPN1/PTNP21 genes were also identified, highlighting the evolution of the Lithuanian population's genome over generations, and possible genomic "deficiencies" for better adaptation.


Assuntos
Genoma , Seleção Genética , Recém-Nascido , Humanos , Pessoa de Meia-Idade , Lituânia , Frequência do Gene , Genoma/genética , Mutação
5.
Glob Health Action ; 16(1): 2233843, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37459245

RESUMO

The adverse effects on the health of the Chornobyl nuclear power plant accident clean-up workers have been reported previously. However, there is a lack of studies on the mental health of Chornobyl clean-up workers. The current study explored psychological distress in a sample of Lithuanian clean-up workers 35 years after the accident. In total, 107 Lithuanian Chornobyl clean-up workers (Mage = 62.5) and 107 controls were included in the study. The Hospital Anxiety and Depression Scale (HAD) was used for the assessment of anxiety and depression. The depression symptoms were significantly higher in the clean-up workers compared to the control group. The prevalence of severe depression symptoms was 23.4% and 4.7% in the Chornobyl clean-up workers and control groups, respectively. The risk for severe depression was associated with Chornobyl clean-up work (adjusted OR = 5.9). No differences in the anxiety symptoms were found between clean-up workers and controls. The study revealed the deteriorated mental health of the Lithuanian Chornobyl clean-up workers 35 years after the disaster - in particular, high levels of depression. Psychosocial support programmes for clean-up workers should be provided to mitigate the adverse effects of the disaster.


Assuntos
Acidente Nuclear de Chernobyl , Desastres , Humanos , Pessoa de Meia-Idade , Lituânia/epidemiologia
6.
Curr Issues Mol Biol ; 45(4): 2972-2983, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37185719

RESUMO

Some people resist or recover from health challenges better than others. We studied Lithuanian clean-up workers of the Chornobyl nuclear disaster (LCWC) who worked in the harshest conditions and, despite high ionising radiation doses as well as other factors, continue ageing relatively healthily. Thus, we hypothesised that there might be individual features encoded by the genome which act protectively for better adaptiveness and health that depend on unique positive selection signatures. Whole-genome sequencing was performed for 40 LCWC and a control group composed of 25 men from the general Lithuanian population (LTU). Selective sweep analysis was performed to identify genomic regions which may be under recent positive selection and determine better adaptiveness. Twenty-two autosomal loci with the highest positive selection signature values were identified. Most important, unique loci under positive selection have been identified in the genomes of the LCWC, which may influence the survival and adaptive qualities to extreme conditions, and the disaster itself. Characterising these loci provide a better understanding of the interaction between ongoing microevolutionary processes, multifactorial traits, and diseases. Studying unique groups of disease-resistant individuals could help create new insights for better, more individualised, disease diagnostics and prevention strategies.

7.
J Obstet Gynaecol Res ; 49(3): 781-793, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36519629

RESUMO

AIM: The aim is to provide an overview of recent research on genetic factors that influence preterm birth in the context of neonatal phenotypic assessment. METHODS: This is a nonsystematic review of the recent scientific literature. RESULTS: Maternal and fetal genetic diversity and rare genome variants are linked with crucial immune response sites. In addition, more frequent in preterm neonates, de novo variants may lead to attention deficits, hyperactivity, autism spectrum disorders, and infertility of both sexes later in life. Environmental factors may also greatly burden fetal, and consequently, neonatal development and neurodevelopment through a failure in the fetal epigenome reprogramming process and even influence the initiation of spontaneous preterm pregnancy termination. Minimally invasive analysis of the transcription factors associated with preterm birth helps elucidate labor mechanisms and predict its timing. We also provide valuable summaries of genomic and transcriptomic factors that contribute to preterm birth. CONCLUSIONS: Investigation of the human genome, epigenome, and transcriptome helps to identify molecular mechanisms linked with preterm delivery and premature newborn clinical appearance in early and late neonatal life and even predict developmental outcomes. Further studies are needed to fully understand the implications of genetic changes in preterm births. These data could be used to develop targeted interventions aimed at selecting the most effective individual treatment and rehabilitation plan.


Assuntos
Doenças do Recém-Nascido , Trabalho de Parto , Nascimento Prematuro , Gravidez , Lactente , Feminino , Recém-Nascido , Humanos , Nascimento Prematuro/genética , Recém-Nascido Prematuro , Fenótipo
8.
Genes (Basel) ; 13(4)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35456375

RESUMO

Most genetic variants are rare and specific to the population, highlighting the importance of characterizing local population genetic diversity. Many countries have initiated population-based whole-genome sequencing (WGS) studies. Genomic variation within Lithuanian families are not available in the public databases. Here, we describe initial findings of a high-coverage (an average of 36.27×) whole genome sequencing for 25 trios of the Lithuanian population. Each genome on average carried approximately 4,701,473 (±28,255) variants, where 80.6% (3,787,626) were single nucleotide polymorphisms (SNPs), and the rest 19.4% were indels. An average of 12.45% was novel according to dbSNP (build 150). The WGS structural variation (SV) analysis identified on average 9133 (±85.10) SVs, of which 95.85% were novel. De novo single nucleotide variation (SNV) analysis identified 4417 variants, where 1.1% de novo SNVs were exonic, 43.9% intronic, 51.9% intergenic, and the rest 3.13% in UTR or downstream sequence. Three potential pathogenic de novo variants in the ZSWIM8, CDC42EP1, and RELA genes were identified. Our findings provide useful information on local human population genomic variation, especially for de novo variants, and will be a valuable resource for further genetic studies, and medical implications.


Assuntos
Genoma Humano , Mutação INDEL , Humanos , Lituânia , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do Genoma
9.
Food Sci Nutr ; 10(3): 763-771, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35282004

RESUMO

Variation in carotenoid bioavailability at individual and population levels might depend on host-related factors where genetic variation has a part to play. It manifests itself through the proteins involved in carotenoid intestinal absorption and metabolism, blood lipoprotein transport, or tissue uptake. This study aims to identify novel SNPs which could be associated with carotenoid serum concentrations. A total of 265 self-reported healthy individuals of Lithuanian origin were genotyped (Illumina HumanOmniExpress-12v1.0 or v1.1 and Infinium OmniExpress-24v1.2 arrays) and fasting blood serum concentrations of ß- and α-carotene, ß-cryptoxanthin, lycopene, lutein, and zeaxanthin were measured (Shimadzu Prominence HPLC system). According to the individual carotenoid concentrations, the cohort was subdivided into quartiles. Q1 and Q4 were used for the following association analysis. The set of 2883 SNPs in 109 potential candidate genes (assumed for a direct or indirect role in carotenoid bioavailability) was analyzed. Liver X receptor alpha (NR1H3) "transport" polymorphisms rs2279238 (p = 2.129 × 10-5) and rs11039155 (p = 2.984 × 10-5), and apolipoprotein B (APOB) "transport" polymorphism rs550619 (p = 4.844 × 10-5) were associated with higher zeaxanthin concentration. Retinol dehydrogenase 12 (RDH12) "functional partner" polymorphism rs756473 (p = 7.422 × 10-5) was associated with higher lycopene concentration. Twenty-one cytochrome P450 (CYP2C9, CYP2C18, and CYP2C19) "metabolism" polymorphisms in locus 10q23.33 were significantly associated with higher ß-carotene concentration. To conclude, four novel genomic loci were found to be associated with carotenoid serum levels. Zeaxanthin, lycopene, and ß-carotene serum concentrations might depend on genetic variation in NR1H3, APOB, RDH12 and CYP2C9, CYP2C18, and CYP2C19 genes.

10.
Medicina (Kaunas) ; 58(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35334527

RESUMO

Background and Objectives: The pathogenic variants of SLC9A6 are a known cause of a rare, X-linked neurological disorder called Christianson syndrome (CS). The main characteristics of CS are developmental delay, intellectual disability, and neurological findings. This study investigated the genetic basis and explored the molecular changes that led to CS in two male siblings presenting with intellectual disability, epilepsy, behavioural problems, gastrointestinal dysfunction, poor height, and weight gain. Materials and Methods: Next-generation sequencing of a tetrad was applied to identify the DNA changes and Sanger sequencing of proband's cDNA was used to evaluate the impact of a splice site variant on mRNA structure. Bioinformatical tools were used to investigate SLC9A6 protein structure changes. Results: Sequencing and bioinformatical analysis revealed a novel donor splice site variant (NC_000023.11(NM_001042537.1):c.899 + 1G > A) that leads to a frameshift and a premature stop codon. Protein structure modelling showed that the truncated protein is unlikely to form any functionally relevant SLC9A6 dimers. Conclusions: Molecular and bioinformatical analysis revealed the impact of a novel donor splice site variant in the SLC9A6 gene that leads to truncated and functionally disrupted protein causing the phenotype of CS in the affected individuals.


Assuntos
Epilepsia , Deficiência Intelectual , Microcefalia , Ataxia , Epilepsia/genética , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Deficiência Intelectual/genética , Lituânia , Masculino , Microcefalia/genética , Transtornos da Motilidade Ocular
11.
Eur J Hum Genet ; 30(3): 332-338, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34363065

RESUMO

The effect of a variant on an organism is always multifaceted and can be considered from multiple perspectives-biochemical, medical, or evolutionary. However, the relationship between the effects of amino acid substitution on protein activity, human health, and an individual's evolutionary fitness is not trivial. We uncover that the general Lithuanian population is characterized by a "mirror reflection" of the de novo variant fitness effect, confirming the theory of neutrality. Meanwhile, in the group of individuals with intellectual disability, compared with the reference exome de novo variants significantly changed the composition of the amino acid. Therefore, it predicts that, both in terms of the number of amino acids and changes in their relative fitness, the structure of the proteins encoded by the studied amino acids undergo significant changes following the de novo variant, leading to possible changes in protein function associated with phenotypic traits. These results suggest that the analysis of relative fitness of exome sequences with de novo variants can predict the future phenotype. Therefore even in those cases, then only a few of all functional prediction analysis tools predict a variant as damaging, the negative relative fitness or even adaptability of the genome variant should be carefully evaluated considering both its direct function and the global background of the possible disease-associated mechanism regardless of the phenotype being studied.


Assuntos
Deficiência Intelectual , Aminoácidos/genética , Exoma/genética , Humanos , Deficiência Intelectual/genética , Lituânia , Mutação , Fenótipo
12.
BMC Musculoskelet Disord ; 22(1): 1020, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863162

RESUMO

BACKGROUND: Autosomal recessive limb-girdle muscular dystrophy-1 (LGMDR1), also known as calpainopathy, is a genetically heterogeneous disorder characterised by progression of muscle weakness. Homozygous or compound heterozygous variants in the CAPN3 gene are known genetic causes of this condition. The aim of this study was to confirm the molecular consequences of the CAPN3 variant NG_008660.1(NM_000070.3):c.1746-20C > G of an individual with suspected LGMDR1 by extensive complementary DNA (cDNA) analysis. CASE PRESENTATION: In the present study, we report on a male with proximal muscular weakness in his lower limbs. Compound heterozygous NM_000070.3:c.598_612del and NG_008660.1(NM_000070.3):c.1746-20C > G genotype was detected on the CAPN3 gene by targeted next-generation sequencing (NGS). To confirm the pathogenicity of the variant c.1746-20C > G, we conducted genetic analysis based on Sanger sequencing of the proband's cDNA sample. The results revealed that this splicing variant disrupts the original 3' splice site on intron 13, thus leading to the skipping of the DNA fragment involving exon 14 and possibly exon 15. However, the lack of exon 15 in the CAPN3 isoforms present in a blood sample was explained by cell-specific alternative splicing rather than an aberrant splicing mechanism. In silico the c.1746-20C > G splicing variant consequently resulted in frameshift and formation of a premature termination codon (NP_000061.1:p.(Glu582Aspfs*62)). CONCLUSIONS: Based on the results of our study and the literature we reviewed, both c.598_612del and c.1746-20C > G variants are pathogenic and together cause LGMDR1. Therefore, extensive mRNA and/or cDNA analysis of splicing variants is critical to understand the pathogenesis of the disease.


Assuntos
Calpaína , Distrofia Muscular do Cíngulo dos Membros , Calpaína/genética , Homozigoto , Humanos , Masculino , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação
13.
Genes (Basel) ; 12(11)2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34828336

RESUMO

There are still several unanswered questions regarding about ancient events in the Lithuanian population. The Lithuanians, as the subject of this study, are of great interest as they represent a partially isolated population maintaining an ancient genetic composition and show genetic uniqueness in European comparisons. To elucidate the genetic relationships between the Lithuania and North-Eastern European and West Siberian populations, we analyzed the population structure, effective population size, and recent positive selection from genome-wide single nucleotide polymorphism (SNP) data. We identified the close genetic proximity of Lithuanians to neighboring populations (Latvians, Estonians, Belarusians) and in part with West and South Slavs (Poles, Slovaks, and Slovenians), however, with particular genetic distinctiveness. The estimated long-term Ne values ranged from ~5900 in the Estonian population to ~2400 in the South Russian population. The divergence times between the Lithuanian and study populations ranged from 240 to 12,871 YBP. We also found evidence of selection in 24 regions, 21 of which have not been discovered in previous analyses of selection. Undoubtedly, the genetic diversity analysis of geographically specific regions may provide new insights into microevolutionary processes affecting local human populations.


Assuntos
Genética Populacional/métodos , Polimorfismo de Nucleotídeo Único , População Branca/genética , Feminino , Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lituânia/etnologia , Masculino , Pessoa de Meia-Idade , Densidade Demográfica , Análise de Sequência de DNA , População Branca/etnologia
14.
Genes (Basel) ; 12(8)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34440405

RESUMO

Ionising radiation (IR) is an environmental factor known to alter genomes and therefore challenge organisms to adapt. Lithuanian clean-up workers of the Chernobyl nuclear disaster (LCWC) experienced high doses of IR, leading to different consequences. This study aims to characterise a unique protective genomic variation in a relatively healthy LCWC group. This variation influenced their individual reaction to IR and potentially protects against certain diseases such as exfoliation syndrome and glaucoma. Clinical and IR dosage data were collected using a questionnaire to characterise the cohort of 93 LCWC. Genome-wide genotyping using Illumina beadchip technology was performed. The control group included 466 unrelated, self-reported healthy individuals of Lithuanian descent. Genotypes were filtered out from the microarray dataset using a catalogue of SNPs. The data were used to perform association, linkage disequilibrium, and epistasis analysis. Phenotype data analysis showed the distribution of the most common disease groups among the LCWC. A genomic variant of statistical significance (Fishers' exact test, p = 0.019), rs3825942, was identified in LOXL1 (NM_005576.4:c.458G>A). Linkage disequilibrium and epistasis analysis for this variant identified the genes LHFPL3, GALNT6, PIH1D1, ANKS1B, and METRNL as potentially involved in the etiopathogenesis of exfoliation syndrome and glaucoma, which were not previously associated with the disease. The LOXL1 variant is mostly considered a risk factor in the development of exfoliation syndrome and glaucoma. The influence of recent positive selection, the phenomenon of allele-flipping, and the fact that only individuals with the homozygous reference allele have glaucoma in the cohort of the LCWC suggest otherwise. The identification of rs3825942 and other potentially protective genomic variants may be useful for further analysis of the genetic architecture and etiopathogenetic mechanisms of other multifactorial diseases.


Assuntos
Aminoácido Oxirredutases/genética , Acidente Nuclear de Chernobyl , Exposição Ocupacional , Estudos de Casos e Controles , Estudos de Coortes , Humanos , Desequilíbrio de Ligação , Masculino , Ucrânia
15.
Food Sci Nutr ; 9(8): 4310-4321, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34401081

RESUMO

Taste has strong evolutionary basis in the sense of survival by influencing our behavior to obtain food/medicine or avoid poisoning. It is a complex trait and varies among individuals and distinct populations. We aimed to investigate the association between known genetic factors (673 SNPs) and taste preference in the Lithuanian population, as well as to determine a reasonable method for qualitative evaluation of a specific taste phenotype for further genetic analysis. Study group included individuals representing six ethnolinguistic regions of Lithuania. Case and control groups for each taste were determined according to the answers selected to the taste-specific and frequency of specific food consumption questions. Sample sizes (case/control) for each taste are as follows: sweetness (55/179), bitterness (82/208), sourness (32/259), saltiness (42/249), and umami (96/190). Genotypes were extracted from the Illumina HumanOmniExpress-12v1.1 arrays' genotyping data. Analysis was performed using PLINK v1.9. We found associations between the main known genetic factors and four taste preferences in the Lithuanian population: sweetness-genes TAS1R3, TAS1R2, and GNAT3 (three SNPs); bitterness-genes CA6 and TAS2R38 (six SNPs); sourness-genes PKD2L1, ACCN2, PKD1L3, and ACCN1 (48 SNPs); and saltiness-genes SCNN1B and TRPV1 (five SNPs). We found our questionnaire as a beneficial aid for qualitative evaluation of taste preference. This was the first initiative to analyze genetic factors related to taste preference in the Lithuanian population. Besides, this study reproduces, supports, and complements results of previous limited taste genetic studies or ones that lack comprehensive results concerning distinct (ethnic) human populations.

16.
Am J Med Genet A ; 185(4): 1275-1281, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33527719

RESUMO

Individuals carrying biallelic loss-of-function mutations in PCDH12 have been reported with three different conditions: the diencephalic-mesencephalic junction dysplasia syndrome 1 (DMJDS1), a disorder characterized by global developmental delay, microcephaly, dystonia, and a midbrain malformation at the diencephalic-mesencephalic junction; cerebral palsy combined with a neurodevelopmental disorder; and cerebellar ataxia with retinopathy. We report an additional patient carrying a homozygous PCDH12 frameshift, whose anamnesis combines the most recurrent DMJDS1 clinical features, that is, global developmental delay, microcephaly, and ataxia, with exudative vitreoretinopathy. This case and previously published DMJDS1 patients presenting with nonspecific visual impairments and ophthalmic disorders suggest that ophthalmic alterations are an integral part of clinical features associated with PCDH12 loss-of-function.


Assuntos
Ataxia/genética , Caderinas/genética , Deficiências do Desenvolvimento/genética , Microcefalia/genética , Adolescente , Adulto , Ataxia/diagnóstico , Ataxia/patologia , Criança , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/patologia , Diencéfalo/diagnóstico por imagem , Diencéfalo/patologia , Feminino , Homozigoto , Humanos , Mutação com Perda de Função/genética , Masculino , Microcefalia/diagnóstico , Microcefalia/patologia , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Linhagem , Protocaderinas , Doenças Retinianas/diagnóstico por imagem , Doenças Retinianas/genética , Doenças Retinianas/patologia
17.
Am J Hum Genet ; 108(2): 346-356, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33513338

RESUMO

Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression, and a severe phenotype. In contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Cromatina/metabolismo , Feminino , Estudos de Associação Genética , Haploinsuficiência , Humanos , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/química , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Modelos Moleculares , Mutação de Sentido Incorreto , Ligação Proteica , Domínios Proteicos , Transcrição Gênica
18.
Mol Biol Evol ; 37(11): 3175-3187, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32589725

RESUMO

The Roma Diaspora-traditionally known as Gypsies-remains among the least explored population migratory events in historical times. It involved the migration of Roma ancestors out-of-India through the plateaus of Western Asia ultimately reaching Europe. The demographic effects of the Diaspora-bottlenecks, endogamy, and gene flow-might have left marked molecular traces in the Roma genomes. Here, we analyze the whole-genome sequence of 46 Roma individuals pertaining to four migrant groups in six European countries. Our analyses revealed a strong, early founder effect followed by a drastic reduction of ∼44% in effective population size. The Roma common ancestors split from the Punjabi population, from Northwest India, some generations before the Diaspora started, <2,000 years ago. The initial bottleneck and subsequent endogamy are revealed by the occurrence of extensive runs of homozygosity and identity-by-descent segments in all Roma populations. Furthermore, we provide evidence of gene flow from Armenian and Anatolian groups in present-day Roma, although the primary contribution to Roma gene pool comes from non-Roma Europeans, which accounts for >50% of their genomes. The linguistic and historical differentiation of Roma in migrant groups is confirmed by the differential proportion, but not a differential source, of European admixture in the Roma groups, which shows a westward cline. In the present study, we found that despite the strong admixture Roma had in their diaspora, the signature of the initial bottleneck and the subsequent endogamy is still present in Roma genomes.


Assuntos
Genoma Humano , Roma (Grupo Étnico)/genética , Europa (Continente) , Fluxo Gênico , Humanos , Filogeografia , Densidade Demográfica
19.
Gene ; 753: 144816, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32473250

RESUMO

Hemizygosity of the MIR17HG gene encoding the miR-17 ~ 92 cluster is associated with Feingold syndrome 2 characterized by intellectual disability, skeletal abnormalities, short stature, and microcephaly. Here, we report on a female with a de novo 13q31.3 microduplication encompassing MIR17HG but excluding GPC5. She presented developmental delay, skeletal and digital abnormalities, and features such as tall stature and macrocephaly mirroring those of Feingold syndrome 2 patients. The limited extent of the proband's rearrangement to the miR cluster and the corresponding normal expression level of the neighboring GPC5 in her cells, together with previously described data on affected individuals of two families carrying overlapping duplications of the miR-17 ~ 92 cluster that comprise part of GPC5, who likewise presented macrocephaly, developmental delay, as well as skeletal, digital and stature abnormalities, allow to define a new syndrome due to independent microduplication of the miR-17 ~ 92 cluster.


Assuntos
Transtornos Cromossômicos/genética , Pálpebras/anormalidades , Deficiência Intelectual/genética , Deformidades Congênitas dos Membros/genética , MicroRNAs/genética , Microcefalia/genética , Fístula Traqueoesofágica/genética , Adolescente , Deleção Cromossômica , Cromossomos Humanos Par 13/genética , Hibridização Genômica Comparativa/métodos , Deficiências do Desenvolvimento/genética , Nanismo/genética , Feminino , Duplicação Gênica/genética , Glipicanas/genética , Glipicanas/metabolismo , Humanos , Fenótipo
20.
Genes (Basel) ; 11(3)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164396

RESUMO

The prehistory of the Lithuanian population and genetic relationship to other populations are poorly studied. Thus, the Lithuanian population, as an object of study, is interesting due to its partial isolation with genetic distinctiveness within the European context and with preserved ancient genetic composition. The main objects of this study was to infer demographic parameters, effective population size (Ne), and divergence time using high-density single nucleotide polymorphism (SNP) genotyping data generated with the Illumina HumanOmmiExpress-12v1.1 array in 295 individuals from the Lithuanian population and to compare our data with other populations from the Human Genome Cell Line Diversity Panel (HGDP-CEPH). We also aimed to reconstruct past events between the main ethnolinguistic regions-Aukstaitija and Zemaitija of Lithuania. Historically, these regions probably developed as two independent Baltic tribes. Our results of Ne in the Lithuanian population through time demonstrated a substantial reduction of Ne over the 150,000-25,000 years before present (YBP). The estimated long-term Ne of the Lithuanian population is quite low-it equals 5404, which likely is a consequence of the bottlenecks associated with the last glacial period of 25,000-12,000 YBP in Europe. The obtained divergence time estimates between the study populations are in agreement with recent studies. The reconstructed past events in Aukstaitija and Zemaitija showed significant differences between these two regions of Lithuania.


Assuntos
Evolução Molecular , Genótipo , População/genética , Feminino , Genoma Humano , Migração Humana , Humanos , Lituânia , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA