Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 36(18): 5030-5039, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32302137

RESUMO

The composition, orientation, and conformation of proteins in biomolecular coronas acquired by nanoparticles in biological media contribute to how they are identified by a cell. While numerous studies have investigated protein composition in biomolecular coronas, relatively little detail is known about how the nanoparticle surface influences the orientation and conformation of the proteins associated with them. We previously showed that the peripheral membrane protein cytochrome c adopts preferred poses relative to negatively charged 3-mercaptopropionic acid (MPA)-gold nanoparticles (AuNPs). Here, we employ molecular dynamics simulations and complementary experiments to establish that cytochrome c also assumes preferred poses upon association with nanoparticles functionalized with an uncharged ligand, specifically ω-(1-mercaptounde-11-cyl)hexa(ethylene glycol) (EG6). We find that the display of the EG6 ligands is sensitive to the curvature of the surface-and, consequently, the effective diameter of the nearly spherical nanoparticle core-which in turn affects the preferred poses of cytochrome c.


Assuntos
Ouro , Nanopartículas Metálicas , Ácido 3-Mercaptopropiônico , Citocromos c , Ligantes
2.
Langmuir ; 34(36): 10793-10805, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30102857

RESUMO

Molecular understanding of the impact of nanomaterials on cell membranes is critical for the prediction of effects that span environmental exposures to nanoenabled therapies. Experimental and computational studies employing phospholipid bilayers as model systems for membranes have yielded important insights but lack the biomolecular complexity of actual membranes. Here, we increase model membrane complexity by incorporating the peripheral membrane protein cytochrome c and studying the interactions of the resulting membrane systems with two types of anionic nanoparticles. Experimental and computational studies reveal that the extent of cytochrome c binding to supported lipid bilayers depends on anionic phospholipid number density and headgroup chemistry. Gold nanoparticles functionalized with short, anionic ligands or wrapped with an anionic polymer do not interact with silica-supported bilayers composed solely of phospholipids. Strikingly, when cytochrome c was bound to these bilayers, nanoparticles functionalized with short anionic ligands attached to model biomembranes in amounts proportional to the number of bound cytochrome c molecules. In contrast, anionic polymer-wrapped gold nanoparticles appeared to remove cytochrome c from supported lipid bilayers in a manner inversely proportional to the strength of cytochrome c binding to the bilayer; this reflects the removal of a weakly bound pool of cytochrome c, as suggested by molecular dynamics simulations. These results highlight the importance of the surface chemistry of both the nanoparticle and the membrane in predicting nano-bio interactions.


Assuntos
Citocromos c/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Nanopartículas Metálicas/química , Animais , Sítios de Ligação , Cardiolipinas/química , Bovinos , Citocromos c/química , Ouro/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Fosfatidilinositóis , Ligação Proteica , Eletricidade Estática
3.
J Am Chem Soc ; 139(16): 5808-5816, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28358209

RESUMO

Mechanistic insight into how polycations disrupt and cross cell membranes is needed for understanding and controlling polycation-membrane interactions, yet such information is surprisingly difficult to obtain at the molecular level. We use second harmonic and vibrational sum frequency generation spectroscopies along with quartz crystal microbalance with dissipation monitoring and computer simulations to quantify the interaction of poly(allylamine) hydrochloride (PAH) and its monomeric precursor allylamine hydrochloride (AH) with lipid bilayers. We find PAH adsorption to be reversible and nondisruptive to the bilayer under the conditions of our experiments. With an observed free adsorption energy of -52.7 ± 0.6 kJ/mol, PAH adsorption was found to be surprisingly less favorable relative to AH (-14.6 ± 0.4 kJ/mol) when considering a simple additive model. By experimentally quantifying the number of adsorbates and the average amount of charge carried by each adsorbate, we find that the PAH is associated with only 70% of the positive charges it could hold while the AH remains mostly charged while attached to the membrane. Simulations indicate that PAH pulls in condensed counterions from solution to avoid charge-repulsion along its backbone and with other PAH molecules to attach to, and completely cover, the bilayer surface. In addition, computations indicate that the amine groups shift their pKa values due to the confined environment upon adsorption to the surface. Our results provide experimental constraints for theoretical calculations, which yield atomistic views of the structures that are formed when polycations interact with lipid membranes that will be important for predicting polycation-membrane interactions.

4.
J Phys Chem B ; 121(6): 1321-1329, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28085279

RESUMO

With production of carbon nanotubes surpassing billions of tons per annum, concern about their potential interactions with biological systems is growing. Herein, we utilize second harmonic generation spectroscopy, sum frequency generation spectroscopy, and quartz crystal microbalance with dissipation monitoring to probe the interactions between oxidized multiwalled carbon nanotubes (O-MWCNTs) and supported lipid bilayers composed of phospholipids with phosphatidylcholine head groups as the dominant component. We quantify O-MWCNT attachment to supported lipid bilayers under biogeochemically relevant conditions and discern that the interactions occur without disrupting the structural integrity of the lipid bilayers for the systems probed. The extent of O-MWCNT sorption was far below a monolayer even at 100 mM NaCl and was independent of the chemical composition of the supported lipid bilayer.


Assuntos
Corantes Fluorescentes/química , Bicamadas Lipídicas/química , Nanotubos de Carbono/química , Oxirredução
5.
Environ Sci Technol ; 49(17): 10642-50, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26207769

RESUMO

Design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations and assessment of the potential implications of nanoparticle release into the environment requires understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate the electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the outer leaflet-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed the electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) and second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. The association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides.


Assuntos
Membrana Celular/efeitos dos fármacos , Lipopolissacarídeos/química , Membranas Artificiais , Nanopartículas Metálicas/toxicidade , Shewanella/efeitos dos fármacos , Ânions , Aderência Bacteriana/efeitos dos fármacos , Cátions , Ouro/química , Hidrodinâmica , Bicamadas Lipídicas/química , Fosfolipídeos/química , Técnicas de Microbalança de Cristal de Quartzo , Shewanella/citologia , Soluções , Eletricidade Estática , Compostos de Sulfidrila/química
6.
Environ Sci Technol ; 47(13): 6925-34, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23611152

RESUMO

Prions are the infectious agents in the class of fatal neurodegenerative diseases known as transmissible spongiform encephalopathies, which affect humans, deer, sheep, and cattle. Prion diseases of deer and sheep can be transmitted via environmental routes, and soil is has been implicated in the transmission of these diseases. Interaction with soil particles is expected to govern the transport, bioavailability and persistence of prions in soil environments. A mechanistic understanding of prion interaction with soil components is critical for understanding the behavior of these proteins in the environment. Here, we report results of a study to investigate the interactions of prions with model oxide surfaces (Al2O3, SiO2) using quartz crystal microbalance with dissipation monitoring and optical waveguide light mode spectroscopy. The efficiency of prion attachment to Al2O3 and SiO2 depended strongly on pH and ionic strength in a manner consistent with electrostatic forces dominating interaction with these oxides. The presence of the N-terminal portion of the protein appeared to promote attachment to Al2O3 under globally electrostatically repulsive conditions. We evaluated the utility of recombinant prion protein as a surrogate for prions in attachment experiments and found that its behavior differed markedly from that of the infectious agent. Our findings suggest that prions would tend to associate with positively charged mineral surfaces in soils (e.g., iron and aluminum oxides).


Assuntos
Óxido de Alumínio/química , Príons/química , Dióxido de Silício/química , Solo/química , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA