Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biochim Biophys Acta ; 1843(8): 1612-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24370777

RESUMO

Outer membrane vesicles (OMVs) are constitutively produced by all Gram-negative bacteria. OMVs form when buds from the outer membrane (OM) of cells encapsulate periplasmic material and pinch off from the OM to form spheroid particles approximately 10 to 300nm in diameter. OMVs accomplish a diversity of functional roles yet the OMV's utility is ultimately determined by its unique composition. Inclusion into OMVs may impart a variety of benefits to the protein cargo, including: protection from proteolytic degradation, enhancement of long-distance delivery, specificity in host-cell targeting, modulation of the immune response, coordinated secretion with other bacterial effectors, and/or exposure to a unique function-promoting environment. Many enriched OMV-associated components are virulence factors, aiding in host cell destruction, immune system evasion, host cell invasion, or antibiotic resistance. Although the mechanistic details of how proteins become enriched as OMV cargo remain elusive, recent data on OM biogenesis and relationships between LPS structure and OMV-cargo inclusion rates shed light on potential models for OM organization and consequent OMV budding. In this review, mechanisms based on pre-existing OM microdomains are proposed to explain how cargo may experience differing levels of enrichment in OMVs and degrees of association with OMVs during extracellular export. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas Periplásmicas/metabolismo , Transporte Proteico/genética , Proteínas da Membrana Bacteriana Externa/química , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Periplasma/química , Periplasma/metabolismo , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo , Fatores de Virulência/química , Fatores de Virulência/metabolismo
3.
J Biol Chem ; 275(17): 12489-96, 2000 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-10777535

RESUMO

Escherichia coli and other Gram-negative bacteria produce outer membrane vesicles during normal growth. Vesicles may contribute to bacterial pathogenicity by serving as vehicles for toxins to encounter host cells. Enterotoxigenic E. coli (ETEC) vesicles were isolated from culture supernatants and purified on velocity gradients, thereby removing any soluble proteins and contaminants from the crude preparation. Vesicle protein profiles were similar but not identical to outer membranes and differed between strains. Most vesicle proteins were resistant to dissociation, suggesting they were integral or internal. Thin layer chromatography revealed that major outer membrane lipid components are present in vesicles. Cytoplasmic membranes and cytosol were absent in vesicles; however, alkaline phosphatase and AcrA, periplasmic residents, were localized to vesicles. In addition, physiologically active heat-labile enterotoxin (LT) was associated with ETEC vesicles. LT activity correlated directly with the gradient peak of vesicles, suggesting specific association, but could be removed from vesicles under dissociating conditions. Further analysis revealed that LT is enriched in vesicles and is located both inside and on the exterior of vesicles. The distinct protein composition of ETEC vesicles and their ability to carry toxin may contribute to the pathogenicity of ETEC strains.


Assuntos
Toxinas Bacterianas/biossíntese , Membrana Celular/metabolismo , Enterotoxinas/biossíntese , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Fosfatase Alcalina/metabolismo , Fracionamento Celular , Cromatografia de Afinidade , Cromatografia em Camada Fina , Endopeptidases/metabolismo , Ensaio de Imunoadsorção Enzimática , Microscopia Eletrônica , Temperatura
4.
Nature ; 391(6663): 187-90, 1998 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-9428766

RESUMO

Vesicles coated with coat protein complex II (COPII) selectively transport molecules (cargo) and vesicle fusion proteins from the endoplasmic reticulum (ER) to the Golgi complex. We have investigated the role of coat proteins in cargo selection and recruitment. We isolated integral membrane and soluble cargo proteins destined for transport from the ER in complexes formed in the presence of Sar1 and Sec23/24, a subset of the COPII components, and GTP or GMP-PNP. Vesicle fusion proteins of the vSNARE family and Emp24, a member of a putative cargo carrier family, were also found in COPII complexes. The inclusion of amino-acid permease molecules into the complex depended on the presence of Shr3, a protein required for the permease to leave the ER. Resident ER proteins Sec61, BiP (Kar2) and Shr3 were not included in the complexes, indicating that the COPII components bound specifically to vesicle cargo. COPII-cargo complexes and putative cargo adaptor-cargo complexes were also isolated from COPII vesicles. Our results indicate that cargo packaging signals and soluble cargo adaptors are recognized by a recruitment complex comprising Sar1-GTP and Sec23/24.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular , Sistemas de Transporte de Aminoácidos , Transporte Biológico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Ativadoras de GTPase , Proteínas de Membrana Transportadoras/metabolismo , Organelas/metabolismo , Proteínas Qc-SNARE , Proteínas R-SNARE , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE
5.
Curr Opin Cell Biol ; 9(4): 477-83, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9261052

RESUMO

Yeast cylosolic coat proteins (COPII) direct the formation of vesicles from the endoplasmic reticulum. The vesicles selectively capture both cargo molecules and the secretory machinery that is necessary for the fusion of the vesicle with the recipient compartment, the Golgi apparatus. Recent efforts have aimed to understand how proteins are selected for inclusion into these vesicles. A variety of cargo adaptors may concentrate and sort secretory and membrane proteins by direct or indirect interaction with a subset of coat protein subunits.


Assuntos
Vesículas Revestidas/fisiologia , Proteínas Fúngicas/fisiologia , Membranas Intracelulares/fisiologia , Saccharomyces cerevisiae/fisiologia , Retículo Endoplasmático/fisiologia , Complexo de Golgi/fisiologia , Fusão de Membrana , Modelos Biológicos , Saccharomyces cerevisiae/ultraestrutura , Transdução de Sinais
7.
J Cell Biol ; 135(3): 585-95, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8909535

RESUMO

In S. cerevisiae lacking SHR3, amino acid permeases specifically accumulate in membranes of the endoplasmic reticulum (ER) and fail to be transported to the plasma membrane. We examined the requirements of transport of the permeases from the ER to the Golgi in vitro. Addition of soluble COPII components (Sec23/24p, Sec13/31p, and Sar1p) to yeast membrane preparations generated vesicles containing the general amino acid permease. Gap1p, and the histidine permease, Hip1p. Shr3p was required for the packaging of Gap1p and Hip1p but was not itself incorporated into transport vesicles. In contrast, the packaging of the plasma membrane ATPase, Pma1p, and the soluble yeast pheromone precursor, glycosylated pro alpha factor, was independent of Shr3p. In addition, we show that integral membrane and soluble cargo colocalize in transport vesicles, indicating that different types of cargo are not segregated at an early step in secretion. Our data suggest that specific ancillary proteins in the ER membrane recruit subsets of integral membrane protein cargo into COPII transport vesicles.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Sistemas de Transporte de Aminoácidos Básicos , Proteínas de Bactérias , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Monoméricas de Ligação ao GTP , Proteínas de Saccharomyces cerevisiae , Sistemas de Transporte de Aminoácidos , Transporte Biológico Ativo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Proteínas Fúngicas/farmacologia , Proteínas de Ligação ao GTP/fisiologia , Proteínas Ativadoras de GTPase , Complexo de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Fator de Acasalamento , Proteínas de Membrana/farmacologia , Microssomos/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares , Peptídeos/metabolismo , Precursores de Proteínas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/enzimologia , Esferoplastos/metabolismo , Proteínas de Transporte Vesicular
9.
Science ; 262(5137): 1234-41, 1993 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-7901913

RESUMO

The assembly of different types of virulence-associated surface fibers called pili in Gram-negative bacteria requires periplasmic chaperones. PapD is the prototype member of the periplasmic chaperone family, and the structural basis of its interactions with pilus subunits was investigated. Peptides corresponding to the carboxyl terminus of pilus subunits bound PapD and blocked the ability of PapD to bind to the pilus adhesin PapG in vitro. The crystal structure of PapD complexed to the PapG carboxyl-terminal peptide was determined to 3.0 A resolution. The peptide bound in an extended conformation with its carboxyl terminus anchored in the interdomain cleft of the chaperone via hydrogen bonds to invariant chaperone residues Arg8 and Lys112. Main chain hydrogen bonds and contacts between hydrophobic residues in the peptide and the chaperone stabilized the complex and may play a role in determining binding specificity. Site-directed mutations in Arg8 and Lys112 abolished the ability of PapD to bind pilus subunits and mediate pilus assembly in vivo, an indication that the PapD-peptide crystal structure is a reflection of at least part of the PapD-subunit interaction.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Fímbrias Bacterianas/metabolismo , Chaperonas Moleculares , Proteínas Periplásmicas , Proteínas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência de Bases , Chaperoninas , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas/química
10.
EMBO J ; 11(4): 1617-22, 1992 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-1348692

RESUMO

Detailed structural analyses revealed a family of periplasmic chaperones in Gram-negative prokaryotes which are structurally and possibly evolutionarily related to the immunoglobulin superfamily and assist in the assembly of adhesive pili. The members of this family have similar structures consistent with the overall topology of an immunoglobulin fold. Seven pilus chaperone sequences from Escherichia coli, Haemophilus influenzae and Klebsiella pneumoniae were aligned and their consensus sequence was superimposed onto the known three-dimensional structure of PapD, a representative member of the family. The molecular details of the conserved and variable structural motifs in this family of periplasmic chaperones give important insight into their structure, function, mechanism of action and evolutionary relationship with the immunoglobulin superfamily.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/genética , Haemophilus influenzae/genética , Hemaglutininas/genética , Imunoglobulinas/genética , Klebsiella pneumoniae/genética , Adesinas de Escherichia coli , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Evolução Biológica , Imunoglobulinas/química , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Conformação Proteica , Homologia de Sequência do Ácido Nucleico
11.
Nature ; 356(6366): 252-5, 1992 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-1348107

RESUMO

Escherichia coli is a frequent cause of several common bacterial infections in humans and animals, including urinary tract infections, bacteraemia and bacteria-related diarrhoea and is also the main cause of neonatal meningitis. Microbial attachment to surfaces is a key event in colonization and infection and results mainly from a stereochemical fit between microbial adhesins and complementary receptors on host cells. Bacterial adhesins required for extracellular colonization by Gram-negative bacteria are often minor components of heteropolymeric fibres called pili which must be oriented in an accessible manner in these structures to be able to bind to specific receptor architectures. P pili mediate the binding of uropathogenic E. coli to a digalactoside receptor determinant present in the urinary tract epithelium. We report here that the adhesin is a component of distinct fibrillar structures present at the tips of the pili. These virulence-associated tip fibrillae are thin, flexible polymers composed mostly of repeating subunits of PapE that frequently terminate with the alpha-D-galactopyranosyl-(1-4)-beta-D-galactopyranose or Gal alpha (1-4)Gal binding PapG adhesin.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/ultraestrutura , Fímbrias Bacterianas/ultraestrutura , Infecções Urinárias/microbiologia , Adesinas de Escherichia coli , Proteínas da Membrana Bacteriana Externa/química , Sequência de Carboidratos , Clonagem Molecular , Epitélio/microbiologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Fímbrias Bacterianas/química , Fímbrias Bacterianas/fisiologia , Microscopia Eletrônica , Dados de Sequência Molecular , Mutação , Óperon , Plasmídeos , Reação em Cadeia da Polimerase , Sequências Repetitivas de Ácido Nucleico , Mapeamento por Restrição , Sistema Urinário/microbiologia
12.
Proc Natl Acad Sci U S A ; 88(23): 10586-90, 1991 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-1683704

RESUMO

Molecular chaperones are found in the cytoplasm of bacteria and in various cellular compartments in eukaryotes to maintain proteins in nonnative conformations that permit their secretion across membranes or assembly into oligomeric structures. Virtually nothing, however, has been reported about a similar requirement for molecular chaperones in the periplasm of Gram-negative bacteria. We used the well-characterized P pilus biogenesis system in Escherichia coli as a model to elucidate the mechanism of action of a periplasmic chaperone, PapD, which is specifically required for P pilus biogenesis. PapD probably associates with at least six P pilus subunits after their secretion across the cytoplasmic membrane, but PapD is not incorporated into the pilus. We used purified periplasmic complex that PapD forms with the PapG adhesin to investigate the function of interactions between the chaperone and its targets. We demonstrated that PapD binds to PapG to form a stable, discrete bimolecular complex and that, unlike cytoplasmic chaperones, the periplasmic PapD chaperone maintained PapG in a native-like conformation. Bound PapD in the complex was displaced by free PapD in vitro; however, the in vivo release of subunits to the nascent pilus is probably driven by an ATP-independent mechanism involving the outer membrane protein PapC. In addition, the binding of PapD to PapG in vitro prevented aggregation of PapG. We propose that the function of PapD and other periplasmic pilus chaperones is to partition newly translocated pilus subunits into assembly-competent complexes and thereby prevent nonproductive aggregation of the subunits in the periplasm. These data provide important information for understanding the mechanism of action of this general class of chaperones that function in the periplasmic space.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Imunoglobulinas/metabolismo , Adesinas de Escherichia coli , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Calorimetria , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Fímbrias Bacterianas/metabolismo , Immunoblotting , Imunoglobulinas/isolamento & purificação , Cinética , Substâncias Macromoleculares , Modelos Estruturais , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA