Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cancer Res ; 19(8): 1422-1436, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33888600

RESUMO

Only a subset of patients responds to immune checkpoint blockade (ICB) in melanoma. A preclinical model recapitulating the clinical activity of ICB would provide a valuable platform for mechanistic studies. We used melanoma tumors arising from an Hgftg;Cdk4R24C/R24C genetically engineered mouse (GEM) model to evaluate the efficacy of an anti-mouse PD-L1 antibody similar to the anti-human PD-L1 antibodies durvalumab and atezolizumab. Consistent with clinical observations for ICB in melanoma, anti-PD-L1 treatment elicited complete and durable response in a subset of melanoma-bearing mice. We also observed tumor growth delay or regression followed by recurrence. For early treatment assessment, we analyzed gene expression profiles, T-cell infiltration, and T-cell receptor (TCR) signatures in regressing tumors compared with tumors exhibiting no response to anti-PD-L1 treatment. We found that CD8+ T-cell tumor infiltration corresponded to response to treatment, and that anti-PD-L1 gene signature response indicated an increase in antigen processing and presentation, cytokine-cytokine receptor interaction, and natural killer cell-mediated cytotoxicity. TCR sequence data suggest that an anti-PD-L1-mediated melanoma regression response requires not only an expansion of the TCR repertoire that is unique to individual mice, but also tumor access to the appropriate TCRs. Thus, this melanoma model recapitulated the variable response to ICB observed in patients and exhibited biomarkers that differentiate between early response and resistance to treatment, providing a valuable platform for prediction of successful immunotherapy. IMPLICATIONS: Our melanoma model recapitulates the variable response to anti-PD-L1 observed in patients and exhibits biomarkers that characterize early antibody response, including expansion of the TCR repertoire.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Biomarcadores/metabolismo , Melanoma/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Melanoma/tratamento farmacológico , Camundongos
3.
Nat Med ; 26(5): 781-791, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32284588

RESUMO

Although immunotherapy has revolutionized cancer treatment, only a subset of patients demonstrate durable clinical benefit. Definitive predictive biomarkers and targets to overcome resistance remain unidentified, underscoring the urgency to develop reliable immunocompetent models for mechanistic assessment. Here we characterize a panel of syngeneic mouse models, representing a variety of molecular and phenotypic subtypes of human melanomas and exhibiting their diverse range of responses to immune checkpoint blockade (ICB). Comparative analysis of genomic, transcriptomic and tumor-infiltrating immune cell profiles demonstrated alignment with clinical observations and validated the correlation of T cell dysfunction and exclusion programs with resistance. Notably, genome-wide expression analysis uncovered a melanocytic plasticity signature predictive of patient outcome in response to ICB, suggesting that the multipotency and differentiation status of melanoma can determine ICB benefit. Our comparative preclinical platform recapitulates melanoma clinical behavior and can be employed to identify mechanisms and treatment strategies to improve patient care.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais , Imunoterapia , Melanoma/patologia , Melanoma/terapia , Animais , Antineoplásicos Imunológicos/uso terapêutico , Antígeno CTLA-4/imunologia , Células Cultivadas , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heterogeneidade Genética , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Ipilimumab/uso terapêutico , Melanoma/diagnóstico , Melanoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Prognóstico , Receptor de Morte Celular Programada 1/imunologia , RNA-Seq , Resultado do Tratamento , Sequenciamento Completo do Genoma
4.
Dis Model Mech ; 8(1): 45-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25431423

RESUMO

Current therapies for glioblastoma multiforme (GBM), the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Previous work describes a genetically engineered mouse (GEM) model that contains perturbations in the most frequently dysregulated networks in GBM (driven by RB, KRAS and/or PI3K signaling and PTEN) that induce development of Grade IV astrocytoma with properties of the human disease. Here, we developed and characterized an orthotopic mouse model derived from the GEM that retains the features of the GEM model in an immunocompetent background; however, this model is also tractable and efficient for preclinical evaluation of candidate therapeutic regimens. Orthotopic brain tumors are highly proliferative, invasive and vascular, and express histology markers characteristic of human GBM. Primary tumor cells were examined for sensitivity to chemotherapeutics and targeted drugs. PI3K and MAPK pathway inhibitors, when used as single agents, inhibited cell proliferation but did not result in significant apoptosis. However, in combination, these inhibitors resulted in a substantial increase in cell death. Moreover, these findings translated into the in vivo orthotopic model: PI3K or MAPK inhibitor treatment regimens resulted in incomplete pathway suppression and feedback loops, whereas dual treatment delayed tumor growth through increased apoptosis and decreased tumor cell proliferation. Analysis of downstream pathway components revealed a cooperative effect on target downregulation. These concordant results, together with the morphologic similarities to the human GBM disease characteristics of the model, validate it as a new platform for the evaluation of GBM treatment.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais , Animais , Antineoplásicos/química , Apoptose , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica , Proteína Glial Fibrilar Ácida , Glioblastoma/tratamento farmacológico , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo
5.
Cancer Res ; 72(22): 5921-33, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22969147

RESUMO

Patients with lung cancer with activating mutations in the EGF receptor (EGFR) kinase, who are treated long-term with tyrosine kinase inhibitors (TKI), often develop secondary mutations in EGFR associated with resistance. Mice engineered to develop lung adenocarcinomas driven by the human EGFR T790M resistance mutation are similarly resistant to the EGFR TKI erlotinib. By tumor volume endpoint analysis, these mouse tumors respond to BIBW 2992 (an irreversible EGFR/HER2 TKI) and rapamycin combination therapy. To correlate EGFR-driven changes in the lung with response to drug treatment, we conducted an integrative analysis of global transcriptome and metabolite profiling compared with quantitative imaging and histopathology at several time points during tumor progression and treatment. Responses to single-drug treatments were temporary, whereas combination therapy elicited a sustained response. During tumor development, metabolomic signatures indicated a shift to high anabolic activity and suppression of antitumor programs with 11 metabolites consistently present in both lung tissue and blood. Combination drug treatment reversed many of the molecular changes found in tumored lung. Data integration linking cancer signaling networks with metabolic activity identified key pathways such as glutamine and glutathione metabolism that signified response to single or dual treatments. Results from combination drug treatment suggest that metabolic transcriptional control through C-MYC and SREBP, as well as ELK1, NRF1, and NRF2, depends on both EGFR and mTORC1 signaling. Our findings establish the importance of kinetic therapeutic studies in preclinical assessment and provide in vivo evidence that TKI-mediated antiproliferative effects also manifest in specific metabolic regulation.


Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/farmacologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Afatinib , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Processos de Crescimento Celular/fisiologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib , Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/administração & dosagem , Sirolimo/administração & dosagem , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA