Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 76: 38-48, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27395781

RESUMO

Dipeptidyl peptidase 4 (DPP 4) is a proline specific serine peptidase that plays an important role in different regulatory processes in mammals. In this report, we isolated and characterized a unique secreted digestive DPP 4 from the anterior midgut of a stored product pest, Tenebrio molitor larvae (TmDPP 4), with a biological function different than that of the well-studied mammalian DPP 4. The sequence of the purified enzyme was confirmed by mass-spectrometry, and was identical to the translated RNA sequence found in a gut EST database. The purified peptidase was characterized according to its localization in the midgut, and substrate specificity and inhibitor sensitivity were compared with those of human recombinant DPP 4 (rhDPP 4). The T. molitor enzyme was localized mainly in the anterior midgut of the larvae, and 81% of the activity was found in the fraction of soluble gut contents, while human DPP 4 is a membrane enzyme. TmDPP 4 was stable in the pH range 5.0-9.0, with an optimum activity at pH 7.9, similar to human DPP 4. Only specific inhibitors of serine peptidases, diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, suppressed TmDPP 4 activity, and the specific dipeptidyl peptidase inhibitor vildagliptin was most potent. The highest rate of TmDPP 4 hydrolysis was found for the synthetic substrate Arg-Pro-pNA, while Ala-Pro-pNA was a better substrate for rhDPP 4. Related to its function in the insect midgut, TmDPP 4 efficiently hydrolyzed the wheat storage proteins gliadins, which are major dietary proteins of T. molitor.


Assuntos
Dipeptidil Peptidase 4/genética , Proteínas de Insetos/genética , Tenebrio/genética , Sequência de Aminoácidos , Animais , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Trato Gastrointestinal/enzimologia , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Alinhamento de Sequência , Tenebrio/enzimologia , Tenebrio/crescimento & desenvolvimento
2.
Cell Cycle ; 9(22): 4501-5, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21084861

RESUMO

The budding yeast Saccharomyces cerevisiae actively transports adverse factors (e.g. oxidized proteins) from the daughter to mother cells. The transport is believed to ensure that the daughters are born "young", thus preventing clonal senescence. Is this the only reason for the existence of such transport? We subjected yeast cells to various stress conditions and compared survival of mother and daughter cells. It was found that replicative age-dependent mortality under our experimental stress conditions was U-shaped: the resistance of both virgin daughters and old mother cells (more than three bud scars) was lower compared to the young mothers. SIR2 mutants were shown to fail to maintain the mother-daughter asymmetry. We showed that sir2 knockout affects the relative stress resistance in favor of the mothers. Thus, daughter cells are more vulnerable to a variety of stresses than the young mothers, and Sir2-dependent transport of the adverse factors acts to equalize the resistance.


Assuntos
Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo , Senescência Celular , Peptídeos/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Estresse Fisiológico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA