Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 53(88): 12004-12007, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29053160

RESUMO

The incorporation of phenylethylammonium bromide (PEABr) into a fully inorganic CsPbBr3 perovskite framework led to the formation of mixed-dimensional perovskites, which enhanced the photoluminescence due to efficient energy funnelling and morphological improvements. With a PEABr : CsPbBr3 ratio of 0.8 : 1, PeLEDs with a current efficiency of 6.16 cd A-1 and an EQE value of 1.97% have been achieved.

2.
ChemSusChem ; 10(19): 3818-3824, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28834213

RESUMO

The primary advantages of halide perovskites for light-emitting diodes (LEDs) are solution processability, direct band gap, good charge-carrier diffusion lengths, low trap density, and reasonable carrier mobility. The luminescence in 3 D halide perovskite thin films originates from free electron-hole bimolecular recombination. However, the slow bimolecular recombination rate is a fundamental performance limitation. Perovskite nanoparticles could result in improved performance but processability and cumbersome synthetic procedures remain challenges. Herein, these constraints are overcome by tailoring the 3 D perovskite as a near monodisperse nanoparticle film prepared through a one-step in situ deposition method. Replacing methyl ammonium bromide (CH3 NH3 Br, MABr) partially by octyl ammonium bromide [CH3 (CH2 )7 NH3 Br, OABr] in defined mole ratios in the perovskite precursor proved crucial for the nanoparticle formation. Films consisting of the in situ formed nanoparticles displayed signatures associated with excitonic recombination, rather than that of bimolecular recombination associated with 3 D perovskites. This transition was accompanied by enhanced photoluminescence quantum yield (PLQY≈20.5 % vs. 3.40 %). Perovskite LEDs fabricated from the nanoparticle films exhibit a one order of magnitude improvement in current efficiency and doubling in luminance efficiency. The material processing systematics derived from this study provides the means to control perovskite morphologies through the selection and mixing of appropriate additives.


Assuntos
Compostos de Cálcio/química , Nanopartículas/química , Nanotecnologia , Óxidos/química , Semicondutores , Titânio/química , Técnicas de Química Sintética
3.
Nanotechnology ; 27(20): 20LT01, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27070991

RESUMO

In this work, a wire-shaped perovskite solar cell based on TiO2 nanotube (TNT) arrays is demonstrated for the first time by integrating a perovskite absorber on TNT-coated Ti wire. Anodization was adopted for the conformal growth of TNTs on Ti wire, together with the simultaneous formation of a compact TiO2 layer. A sequential step dipping process is employed to produce a uniform and compact perovskite layer on top of TNTs with conformal coverage as the efficient light absorber. Transparent carbon nanotube film is wrapped around Ti wire as the hole collector and counter electrode. The integrated perovskite solar cell wire by facile fabrication approaches shows a promising future in portable and wearable textile electronics.

4.
Nanoscale ; 8(12): 6352-60, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26646241

RESUMO

A high open circuit voltage (V(OC)) close to 1.4 V under AM 1.5, 100 mW cm(-2) conditions is achieved when carbon nanotubes (CNTs) are used as a hole conductor in methyl ammonium lead bromide (MAPbBr3) perovskite solar cells. Time-resolved photoluminescence and impedance spectroscopy investigations suggest that the observed high V(OC) is a result of the better charge extraction and lower recombination of the CNT hole conductor. Tandem solar cells with all perovskite absorbers are demonstrated with a MAPbBr3/CNT top cell and a MAPbI3 bottom cell, achieving a V(OC) of 2.24 V in series connection. The semitransparent and high voltage MAPbBr3/CNT solar cells show great potential for applications in solar cell windows, tandem solar cells and solar driven water splitting.

5.
ACS Nano ; 8(7): 6797-804, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24924308

RESUMO

Organic-inorganic metal halide perovskite solar cells were fabricated by laminating films of a carbon nanotube (CNT) network onto a CH3NH3PbI3 substrate as a hole collector, bypassing the energy-consuming vacuum process of metal deposition. In the absence of an organic hole-transporting material and metal contact, CH3NH3PbI3 and CNTs formed a solar cell with an efficiency of up to 6.87%. The CH3NH3PbI3/CNTs solar cells were semitransparent and showed photovoltaic output with dual side illuminations due to the transparency of the CNT electrode. Adding spiro-OMeTAD to the CNT network forms a composite electrode that improved the efficiency to 9.90% due to the enhanced hole extraction and reduced recombination in solar cells. The interfacial charge transfer and transport in solar cells were investigated through photoluminescence and impedance measurements. The flexible and transparent CNT network film shows great potential for realizing flexible and semitransparent perovskite solar cells.

6.
Nano Lett ; 13(6): 2412-7, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23672481

RESUMO

We report a highly efficient solar cell based on a submicrometer (~0.6 µm) rutile TiO2 nanorod sensitized with CH3NH3PbI3 perovskite nanodots. Rutile nanorods were grown hydrothermally and their lengths were varied through the control of the reaction time. Infiltration of spiro-MeOTAD hole transport material into the perovskite-sensitized nanorod films demonstrated photocurrent density of 15.6 mA/cm(2), voltage of 955 mV, and fill factor of 0.63, leading to a power conversion efficiency (PCE) of 9.4% under the simulated AM 1.5G one sun illumination. Photovoltaic performance was significantly dependent on the length of the nanorods, where both photocurrent and voltage decreased with increasing nanorod lengths. A continuous drop of voltage with increasing nanorod length correlated with charge generation efficiency rather than recombination kinetics with impedance spectroscopic characterization displaying similar recombination regardless of the nanorod length.

7.
Pharm Res ; 30(10): 2512-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23314933

RESUMO

PURPOSE: To investigate the effects of the particle size and surface coating on the cellular uptake of the polymeric nanoparticles for drug delivery across the physiological drug barrier with emphasis on the gastrointestinal (GI) barrier for oral chemotherapy and the blood-brain barrier (BBB) for imaging and therapy of brain cancer. METHODS: Various sizes of commercial fluorescent polystyrene nanoparticles (PS NPs) (viz 20 50, 100, 200 and 500 nm) were modified with the d-α-tocopheryl polyethylene glycol 1,000 succinate (vitamin E TPGS or TPGS). The size, surface charge and surface morphology of PS NPs before and after TPGS modification were characterized. The Caco-2 and MDCK cells were employed as an in vitro model of the GI barrier for oral and the BBB for drug delivery into the central nerve system respectively. The distribution of fluorescent NPs after i.v. administration to rats was analyzed by the high performance liquid chromatography (HPLC). RESULTS: The in vitro investigation showed enhanced cellular uptake efficiency for PS NPs in both of Caco-2 and MDCK cells after TPGS surface coating. In vivo investigation showed that the particle size and surface coating are the two parameters which can dramatically influence the NPs biodistribution after intravenous administration. The TPGS coated NPs of smaller size (< 200 nm) can escape from recognition by the reticuloendothelial system (RES) and thus prolong the half-life of the NPs in the blood system. CONCLUSIONS: TPGS-coated PS NPs of 100 and 200 nm sizes have potential to deliver the drug across the GI barrier and the BBB.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Endocitose/fisiologia , Nanopartículas/química , Poliestirenos , Vitamina E/análogos & derivados , Administração Oral , Animais , Barreira Hematoencefálica/metabolismo , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Cães , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Corantes Fluorescentes/química , Trato Gastrointestinal/metabolismo , Humanos , Células Madin Darby de Rim Canino , Masculino , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Poliestirenos/química , Poliestirenos/farmacocinética , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Distribuição Tecidual , Vitamina E/química , Vitamina E/farmacocinética
8.
ACS Appl Mater Interfaces ; 5(2): 444-50, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23252392

RESUMO

Nanoclay minerals play a promising role as additives in the liquid electrolyte to form a gel electrolyte for quasi-solid-state dye-sensitized solar cells, because of the high chemical stability, unique swelling capability, ion exchange capacity, and rheological properties of nanoclays. Here, we report the improved performance of a quasi-solid-state gel electrolyte that is made from a liquid electrolyte and synthetic nitrate-hydrotalcite nanoclay. Charge transport mechanisms in the gel electrolyte and nanoclay interactions with TiO(2)/electrolyte interface are discussed in detail. The electrochemical analysis reveals that the charge transport is solely based on physical diffusion at the ratio of [PMII]:[I(2)] = 10:1 (where PMII is 1-propyl-3-methylimidazolium iodide). The calculated physical diffusion coefficient shows that the diffusion of redox ions is not affected much by the viscosity of nanoclay gel. The addition of nitrate-hydrotalcite clay in the electrolyte has the effect of buffering the protonation process at the TiO(2)/electrolyte interface, resulting in an upward shift in the conduction band and a boost in open-circuit voltage (V(OC)). Higher V(OC) values with undiminished photocurrent is achieved with nitrate-hydrotalcite nanoclay gel electrolyte for organic as well as for inorganic dye (D35 and N719) systems. The efficiency for hydrotalcite clay gel electrolyte solar cells is increased by 10%, compared to that of the liquid electrolyte. The power conversion efficiency can reach 10.1% under 0.25 sun and 9.6% under full sun. This study demonstrates that nitrate-hydrotalcite nanoclay in the electrolyte not only solidifies the liquid electrolyte to prevent solvent leakage, but also facilitates the improvement in cell efficiency.

9.
Phys Chem Chem Phys ; 14(47): 16182-6, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23090062

RESUMO

Ruthenium-based C106 and organic D131 sensitizers have been judicially chosen for co-sensitization due to their complementary absorption properties and different molecular sizes. Co-sensitization yields a higher light-harvesting efficiency as well as better dye coverage to passivate the surface of TiO(2). The co-sensitized devices C106 + D131 showed significant enhancement in the performance (η = 11.1%), which is a marked improvement over baseline devices sensitized with either D131 (η = 5.6%) or C106 (η = 9.5%). The improved performance of the co-sensitized cell is attributed to the combined enhancement in the short circuit current, open circuit voltage, and the fill-factor of the solar cells. J(sc) is improved because of the complementary absorption spectra and favorable energy level alignments of both dyes; whereas, V(oc) is improved because of the better surface coverage helping to reduce the recombination and increase the electron life time. The origins of these enhancements have been systematically studied through dye desorption, absorption spectroscopy, and intensity modulated photovoltage spectroscopy investigations.

10.
Biomaterials ; 33(12): 3494-501, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22306020

RESUMO

The aim of this work was to develop a new type of D-alpha-tocopheryl polyethylene glycol 1000 succinate mono-ester (TPGS) coated multi-functional (theranostic) liposomes, which contain both docetaxel and quantum dots (QDs) for cancer imaging and therapy. Non-targeting and folate receptor targeting TPGS coated theranostic liposomes were prepared by the solvent injection method and characterized for their particle size, polydispersity, zeta potential, surface chemistry and drug encapsulation efficiency. MCF-7 breast cancer cells of folate receptor overexpression were employed as an in vitro model to assess cellular uptake and cytotoxicity of the drug and QDs loaded liposomes. The mean particle size of the non-targeting and the targeting liposomes was found to be 202 and 210 nm, respectively. High resolution field emission transmission electron microscopy (FETEM) confirmed the presence of quantum dots in the peripheral hydrophobic membranes of the liposomes. The qualitative internalization of multi-functional liposomes by MCF-7 cells was visualized by confocal laser scanning microscopy (CLSM). The IC50 value, which is the drug concentration needed to kill 50% cells in a designated time period, was found to be 9.54 ± 0.76, 1.56 ± 0.19 and 0.23 ± 0.05 µg/ml for the commercial Taxotere(®), non-targeting and targeting liposomes, respectively after 24 h culture with MCF-7 cells. The targeting multi-functional liposomes showed greater efficacy than the non-targeting liposomes and thus great potential to improve the cancer imaging and therapy.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Lipossomos/química , Pontos Quânticos , Radiossensibilizantes/administração & dosagem , Taxoides/administração & dosagem , Vitamina E/análogos & derivados , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Docetaxel , Feminino , Humanos , Lipossomos/ultraestrutura , Polietilenoglicóis/química , Radiossensibilizantes/farmacologia , Taxoides/farmacologia , Vitamina E/química
11.
Int J Pharm ; 421(2): 332-40, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22001537

RESUMO

The aim of this work was to develop a drug delivery system of liposomes, which are coated with D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS), a PEGylated vitamin E, with docetaxel as a model drug for enhanced treatment of brain tumour in comparison with the nude liposomes as well as with the so-called stealth liposomes, i.e. those coated with polyethylene glycol (PEG), which have been intensive investigated in the literature. Docetaxel or coumarin-6 loaded liposomes were prepared by the solvent injection method and characterized for their particle size, polydispersity, zeta potential and drug encapsulation efficiency. C6 glioma cells were employed as an in vitro model to access cellular uptake and cytotoxicity of the drug or coumarin-6 loaded liposomes. The particle size of the PEG or TPGS coated liposomes was ranged between 126 and 191nm. High-resolution field-emission transmission electron microscopy (FETEM) confirmed the coating of TPGS on the liposomes. The IC50 value, which is the drug concentration needed to kill 50% cells in a designated time period, was found to be 37.04±1.05, 31.04±0.75, 7.70±0.22, and 5.93±0.57µg/ml for the commercial Taxotere(®), the nude, PEG coated and TPGS coated liposomes, respectively after 24h culture with C6 glioma cells. The TPGS coated liposomes showed great advantages in vitro than the PEG coated liposomes.


Assuntos
Antineoplásicos/farmacologia , Lipossomos/farmacologia , Taxoides/farmacologia , Vitamina E/análogos & derivados , Absorção/efeitos dos fármacos , Antineoplásicos/química , Neoplasias Encefálicas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/química , Cumarínicos/farmacologia , Docetaxel , Glioma , Humanos , Lipossomos/química , Lipossomos/ultraestrutura , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Taxoides/química , Tiazóis/química , Tiazóis/farmacologia , Vitamina E/química , Vitamina E/farmacologia
12.
J Colloid Interface Sci ; 318(2): 372-9, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18061606

RESUMO

Here we describe a novel method of preparing hydrophobic silica particles (100-150 nm; water contact angle of dropcasted film ranging from 60 degrees to 168 degrees) by surface functionalization using different alkyltrichlorosilanes. During their preparation, the molecular surface roughness is also concurrently engineered facilitating a change in both the surface chemical composition and the geometrical microstructure to generate hierarchical structures. The water contact angle has been measured on drop-cast film surface. The enhancement in the water contact angle on 3D (curved) SAMs in comparison to that on 2D (planar) surface is discussed using the Cassie-Baxter equation. These silica particles can be utilized for many potential applications including selective adsorbents and catalysts, chromatographic supports and separators in microfluidic devices.


Assuntos
Membranas Artificiais , Silanos/química , Dióxido de Silício/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Propriedades de Superfície , Temperatura , Termogravimetria
13.
J Colloid Interface Sci ; 299(2): 777-84, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16600277

RESUMO

The passivating behavior of self-assembled monolayers (SAMs) of octadecyltrichlorosilane (OTS) on an n-type Si(100) electrode with and without a redox species like ferrocene in a polar non-aqueous medium has been investigated using techniques like contact angle measurements, Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to understand the role of the monolayer. The electron-transfer behavior of ferrocene is found to be drastically affected by the presence of monolayer and the reasons for these are analyzed as a function of the change in resistance, dielectric thickness and coverage of the monolayer. Electrochemical impedance analysis in the presence of ferrocene gives the monolayer coverage as 0.998 and the apparent rate constant calculated from this gives 4.85 x 10(-12) cm s(-1) in comparison with 4.4 x 10(-8) cm s(-1) for a similar electrode without any monolayer. A positive shift of 200 mV in the flat-band potential after monolayer formation also suggests the covalent coupling of the silane monolayer offering a protective barrier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA