Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Fortune J Health Sci ; 7(1): 112-127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706513

RESUMO

Surface chemistry of nanoparticles play significant role in their cellular interaction. Along with other group, we previously demonstrated that dynamic alteration of cell membrane during uptake of gold nanoparticles can be thoroughly probed by nanomechanical properties of cell membrane. Additionally, endocytosis influences intracellular cytokines expression that also impact membrane stiffness. Hence, we have hypothesized that surface chemistry of gold nanoparticles influences intracellular cytokines which in turn imparts dynamic alteration of nanomechanical properties of cellular membrane of pancreatic cancer cells. Various gold nanoparticles decorated with targeting peptide, polyethylene glycol or their combinations have been used to treat two pancreatic cancer cell lines, Panc-1 and AsPC1, for 1 and 24 hours. Atomic force microscope is used to measure linear and nonlinear nanomechanical properties of cell membrane. Intracellular cytokine has been measured using real time polymeric chain reaction. We evaluated several criteria such as receptor dependent vs independent, PEGylated vs non-PEGylated and different timepoints, to deduce correlations between cytokines and nanomechanical attributes. We have identified unique relationship pro-tumorigenic cytokines with both linear and non-linear nanomechanical properties of Panc-1 and AsPC1 cell membrane during uptake of pristine gold nanoparticles or for PEGylation and for targeting peptide conjugation at the nanoparticle surface.

2.
ACS Appl Mater Interfaces ; 16(9): 11206-11216, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391265

RESUMO

Plasma protein therapies are used by millions of people across the globe to treat a litany of diseases and serious medical conditions. One challenge in the manufacture of plasma protein therapies is the removal of salt ions (e.g., sodium, phosphate, and chloride) from the protein solution. The conventional approach to remove salt ions is the use of diafiltration membranes (e.g., tangential flow filtration) and ion-exchange chromatography. However, the ion-exchange resins within the chromatographic column as well as filtration membranes are subject to fouling by the plasma protein. In this work, we investigate the membrane capacitive deionization (MCDI) as an alternative separation platform for removing ions from plasma protein solutions with negligible protein loss. MCDI has been previously deployed for brackish water desalination, nutrient recovery, mineral recovery, and removal of pollutants from water. However, this is the first time this technique has been applied for removing 28% of ions (sodium, chloride, and phosphate) from human serum albumin solutions with less than 3% protein loss from the process stream. Furthermore, the MCDI experiments utilized highly conductive poly(phenylene alkylene)-based ion exchange membranes (IEMs). These IEMs combined with ionomer-coated nylon meshes in the spacer channel ameliorate Ohmic resistances in MCDI improving the energy efficiency. Overall, we envision MCDI as an effective separation platform in biopharmaceutical manufacturing for deionizing plasma protein solutions and other pharmaceutical formulations without a loss of active pharmaceutical ingredients.


Assuntos
Carbono , Purificação da Água , Humanos , Carbono/química , Cloretos , Cloreto de Sódio/química , Albumina Sérica Humana , Sódio , Fosfatos , Eletrodos , Purificação da Água/métodos , Adsorção
3.
Mater Today Bio ; 25: 100970, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38312803

RESUMO

Fibrosis characterized by excess accumulation of extracellular matrix (ECM) due to complex cell-ECM interactions plays a pivotal role in pathogenesis. Herein, we employ the pancreatic ductal adenocarcinoma (PDAC) model to investigate dynamic alterations in nanomechanical attributes arising from the cell-ECM interactions to study the fibrosis paradigm. Several segregated studies performed on cellular and ECM components fail to recapitulate their complex collaboration. We utilized collagen and fibronectin, the two most abundant PDAC ECM components, and studied their nanomechanical attributes. We demonstrate alteration in morphology and nanomechanical attributes of collagen with varying thicknesses of collagen gel. Furthermore, by mixing collagen and fibronectin in various stoichiometry, their nanomechanical attributes were observed to vary. To demonstrate the dynamicity and complexity of cell-ECM, we utilized Panc-1 and AsPC-1 cells with or without collagen. We observed that Panc-1 and AsPC-1 cells interact differently with collagen and vice versa, evident from their alteration in nanomechanical properties. Further, using nanomechanics data, we demonstrate that ML-based techniques were able to classify between ECM as well as cell, and cell subtypes in the presence/absence of collagen with higher accuracy. This work demonstrates a promising avenue to explore other ECM components facilitating deeper insights into tumor microenvironment and fibrosis paradigm.

5.
BioTech (Basel) ; 12(2)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37218751

RESUMO

There have been significant collaborative efforts over the past three years to develop therapies against COVID-19. During this journey, there has also been a lot of focus on understanding at-risk groups of patients who either have pre-existing conditions or have developed concomitant health conditions due to the impact of COVID-19 on the immune system. There was a high incidence of COVID-19-induced pulmonary fibrosis (PF) observed in patients. PF can cause significant morbidity and long-term disability and lead to death in the long run. Additionally, being a progressive disease, PF can also impact the patient for a long time after COVID infection and affect the overall quality of life. Although current therapies are being used as the mainstay for treating PF, there is no therapy specifically for COVID-induced PF. As observed in the treatment of other diseases, nanomedicine can show significant promise in overcoming the limitations of current anti-PF therapies. In this review, we summarize the efforts reported by various groups to develop nanomedicine therapeutics to treat COVID-induced PF. These therapies can potentially offer benefits in terms of targeted drug delivery to lungs, reduced toxicity, and ease of administration. Some of the nanotherapeutic approaches may provide benefits in terms of reduced immunogenicity owing to the tailored biological composition of the carrier as per the patient needs. In this review, we discuss cellular membrane-based nanodecoys, extracellular vesicles such as exosomes, and other nanoparticle-based approaches for potential treatment of COVID-induced PF.

6.
Pharmaceutics ; 15(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36839877

RESUMO

In cancer patients, chronic paclitaxel (PTX) treatment causes excruciating pain, limiting its use in cancer chemotherapy. The neuroprotective potential of synthetic cannabidiol (CBD) and CBD formulated in extracellular vesicles (CBD-EVs) isolated from human umbilical cord derived mesenchymal stem cells was investigated in C57BL/6J mice with PTX-induced neuropathic pain (PIPN). The particle size of EVs and CBD-EVs, surface roughness, nanomechanical properties, stability, and release studies were all investigated. To develop neuropathy in mice, PTX (8 mg/kg, i.p.) was administered every other day (four doses). In terms of decreasing mechanical and thermal hypersensitivity, CBD-EVs treatment was superior to EVs treatment or CBD treatment alone (p < 0.001). CBD and CBD-EVs significantly reduced mitochondrial dysfunction in dorsal root ganglions and spinal homogenates of PTX-treated animals by modulating the AMPK pathway (p < 0.001). Studies inhibiting the AMPK and 5HT1A receptors found that CBD did not influence the neurobehavioral or mitochondrial function of PIPN. Based on these results, we hypothesize that CBD and CBD-EVs mitigated PIPN by modulating AMPK and mitochondrial function.

7.
Pharm Res ; 40(4): 801-816, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36002615

RESUMO

PURPOSE: There is a growing interest in extracellular vesicles (EVs) for ocular applications as therapeutics, biomarkers, and drug delivery vehicles. EVs secreted from mesenchymal stem cells (MSCs) have shown to provide therapeutic benefits in ocular conditions. However, very little is known about the properties of bioreactor cultured-3D human retinal organoids secreted EVs. This study provides a comprehensive morphological, nanomechanical, molecular, and proteomic characterization of retinal organoid EVs and compares it with human umbilical cord (hUC) MSCs. METHODS: The morphology and nanomechanical properties of retinal organoid EVs were assessed using Nanoparticle tracking analysis (NTA) and Atomic force microscopy (AFM). Gene expression analysis of exosome biogenesis of early and late retinal organoids were compared using qPCR. The protein profile of the EVs were analyzed with proteomic tools. RESULTS: NTA indicated the average size of EV as 100-250 nm. A high expression of exosome biogenesis genes was observed in late retinal organoids EVs. Immunoblot analysis showed highly expressed exosomal markers in late retinal organoids EVs compared to early retinal organoids EVs. Protein profiling of retinal organoid EVs displayed a higher differential expression of retinal function-related proteins and EV biogenesis proteins than hUCMSC EVs, implicating that the use of retinal organoid EVs may have a superior therapeutic effect on retinal disorders. CONCLUSION: This study provides supplementary knowledge on the properties of retinal organoid EVs and suggests their potential use in the diagnostic and therapeutic treatments for ocular diseases.


Assuntos
Exossomos , Vesículas Extracelulares , Humanos , Proteômica , Vesículas Extracelulares/metabolismo , Retina , Organoides/metabolismo
8.
Front Cell Dev Biol ; 10: 903047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846360

RESUMO

Hypoxia-induced endothelial cell (EC) dysfunction has been implicated as potential initiators of different pathogenesis, including Alzheimer's disease and vascular dementia. However, in-depth structural, mechanical, and molecular mechanisms leading to EC dysfunction and pathology need to be revealed. Here, we show that ECs exposed to hypoxic conditions readily enter a senescence phenotype. As expected, hypoxia upregulated the expression of vascular endothelial growth factor (VEGFs) and its receptors (VEGFRs) in the ECs. Interestingly, Knockdown of VEGFR-1 expression prior to hypoxia exposure prevented EC senescence, suggesting an important role of VEGFR-1 expression in the induction of EC senescence. Using atomic force microscopy, we showed that senescent ECs had a flattened cell morphology, decreased membrane ruffling, and increased membrane stiffness, demonstrating unique morphological and nanomechanical signatures. Furthermore, we show that hypoxia inhibited the Hippo pathway Yes-associated protein (YAP-1) expression and knockdown of YAP-1 induced senescence in the ECs, supporting a key role of YAP-1 expression in the induction of EC senescence. And importantly, VEGFR-1 Knockdown in the ECs modulated YAP-1 expression, suggesting a novel VEGFR-1-YAP-1 axis in the induction of hypoxia-mediated EC senescence. In conclusion, VEGFR-1 is overexpressed in ECs undergoing hypoxia-mediated senescence, and the knockdown of VEGFR-1 restores cellular structural and nanomechanical integrity by recovering YAP-1 expression.

9.
BioTech (Basel) ; 11(1)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35822814

RESUMO

The research and development of non-viral gene therapy has been extensive over the past decade and has received a big push thanks to the recent successful approval of non-viral nucleic acid therapy products. Despite these developments, nucleic acid therapy applications in cancer have been limited. One of the main causes of this has been the imbalance in development of delivery vectors as compared with sophisticated nucleic acid payloads, such as siRNA, mRNA, etc. This paper reviews non-viral vectors that can be used to deliver nucleic acids for cancer treatment. It discusses various types of vectors and highlights their current applications. Additionally, it discusses a perspective on the current regulatory landscape to facilitate the commercial translation of gene therapy.

10.
J Nanobiotechnology ; 20(1): 74, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135558

RESUMO

BACKGROUND: Efficacy of targeted drug delivery using nanoparticles relies on several factors including the uptake mechanisms such as phagocytosis, macropinocytosis, micropinocytosis and receptor mediated endocytosis. These mechanisms have been studied with respect to the alteration in signaling mechanisms, cellular morphology, and linear nanomechanical properties (NMPs). Commonly employed classical contact mechanics models to address cellular NMPs fail to address mesh like structure consisting of bilayer lipids and proteins of cell membrane. To overcome this technical challenge, we employed poroelastic model which accounts for the biphasic nature of cells including their porous behavior exhibiting both solid like (fluid storage) and liquid like (fluid dissipate) behavior. RESULTS: In this study, we employed atomic force microscopy to monitor the influence of surface engineering of gold nanoparticles (GNPs) to the alteration of nonlinear NMPs such as drained Poisson's ratio, effective shear stress, diffusion constant and pore dimensions of cell membranes during their uptake. Herein, we used pancreatic cancer (PDAC) cell lines including Panc1, AsPC-1 and endothelial cell (HUVECs) to understand the receptor-dependent and -independent endocytosis of two different GNPs derived using plectin-1 targeting peptide (PTP-GNP) and corresponding scrambled peptide (sPEP-GNP). Compared to untreated cells, in case of receptor dependent endocytosis of PTP-GNPs diffusion coefficient altered ~ 1264-fold and ~ 1530-fold and pore size altered ~ 320-fold and ~ 260-fold in Panc1 and AsPC-1 cells, respectively. Whereas for receptor independent mechanisms, we observed modest alteration in diffusion coefficient and pore size, in these cells compared to untreated cells. Effective shear stress corresponding to 7.38 ± 0.15 kPa and 20.49 ± 0.39 kPa in PTP-GNP treatment in Panc1 and AsPC-1, respectively was significantly more than that for sPEP-GNP. These results demonstrate that with temporal recruitment of plectin-1 during receptor mediated endocytosis affects the poroelastic attributes of the membrane. CONCLUSION: This study confirms that nonlinear NMPs of cell membrane are directly associated with the uptake mechanism of nanoparticles and can provide promising insights of the nature of endocytosis mechanism involved for organ specific drug delivery using nanoparticles. Hence, nanomechanical analysis of cell membrane using this noninvasive, label-free and live-cell analytical tool can therefore be instrumental to evaluate therapeutic benefit of nanoformulations.


Assuntos
Nanopartículas Metálicas , Neoplasias Pancreáticas , Membrana Celular/metabolismo , Endocitose , Ouro/química , Humanos , Nanopartículas Metálicas/química , Neoplasias Pancreáticas/metabolismo
11.
J Pharm Sci ; 111(2): 358-367, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34534574

RESUMO

In response to FDA's call for Quality by Design (QbD) in biopharmaceutical product development, the biopharmaceutical industry has been developing highly sensitive and specific technologies in the monitoring and controlling of product quality attributes for bioprocesses. We previously published the successful application of an off-line multi-attribute method (MAM) to monitor more than 20 critical quality attributes (CQA) with superior sensitivity for the upstream process. To further remove the hurdles of laborious process sampling and sample preparation associated with the offline method, we present here a fully integrated MAM based online platform for automated real time online process monitoring. This integrated system includes Modular Automated Sampling Technology (MAST) based aseptic sampling, multi-function Sequential Injection Analysis (SIA) sample preparation, UHPLC separation and high-resolution mass spectrometry (HRMS) analysis. Continuous automated daily monitoring of a 17-day cell culture process was successfully demonstrated for a model monoclonal antibody (mAb) molecule with similar specificity and sensitivity as we reported earlier. To the best of our knowledge, this is the first report of an end-to-end automated online MAM system, which would allow the MAM to be applied to routine bioprocess monitoring, potentially replacing multiple conventional low resolution and low sensitivity off-line methods. The online HPLC or HPLC/MS platform could be easily adapted to support other processing steps such as downstream purification with minimal software re-configuration.


Assuntos
Produtos Biológicos , Anticorpos Monoclonais/química , Produtos Biológicos/química , Técnicas de Cultura de Células , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
12.
ACS Appl Bio Mater ; 4(1): 984-994, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34913031

RESUMO

Nanoscale alterations in the cellular membrane transpire during cellular interactions with the extracellular environment through the endocytosis processes. Although the biological innuendos as well as alterations in cellular morphology during endocytosis are well-known, nanomechanical amendments in the cellular membrane are poorly understood. In this manuscript, atomic force microscope is employed to demonstrate the nanomechanical alterations in membrane dynamics during receptor mediated endocytosis of gold nanoparticles conjugated with either plectin-1 targeted peptide (PTP-GNP) or scrambled peptide (sPEP-GNP). Plectin-1 is aberrantly overexpressed at cell membrane of pancreatic cancer cells and is known to provide and maintain cellular mechanical integrity. During receptor mediated endocytosis of nanoparticles, we demonstrate temporal nanomechanical changes of cell membrane in both immortal pancreatic cancer Panc1 cells and patient derived primary pancreatic cancer cell, 4911. We further confirm the alterations of plectin-1 expression in Panc1 cell membrane during the receptor mediated endocytosis using classical streptavidin-biotin reaction and establish its association with nanomechanical alteration in membrane dynamics. Withdrawal of PTP-GNPs from the cell culture restores the plectin-1 expression at the membrane and reverses the mechanical properties of Panc1. We also show a distinctly opposite trend in nanomechanical behavior in cancer and endothelial cells when treated with sPEP-GNP and PTP-GNP, respectively, signifying receptor independent endocytosis process. This study illustrates the nanomechanical perspective of cell membrane in receptor mediated endocytosis of nanoparticles designed for organ specific drug delivery.


Assuntos
Membrana Celular/metabolismo , Endocitose/fisiologia , Ouro/química , Nanopartículas Metálicas/química , Plectina/metabolismo , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Plectina/química , Plectina/genética
13.
iScience ; 24(10): 103189, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34703990

RESUMO

Vascular endothelial cell growth factor (VEGF) is a key regulator of vascular permeability. Herein we aim to understand how acute and chronic exposures of VEGF induce different levels of vascular permeability. We demonstrate that chronic VEGF exposure leads to decreased phosphorylation of VEGFR2 and c-Src as well as steady increases of nitric oxide (NO) as compared to that of acute exposure. Utilizing heat-inducible VEGF transgenic zebrafish (Danio rerio) and establishing an algorithm incorporating segmentation techniques for quantification, we monitored acute and chronic VEGF-induced vascular hyperpermeability in real time. Importantly, dimethylarginine dimethylaminohydrolase-1 (DDAH1), an enzyme essential for NO generation, was shown to play essential roles in both acute and chronic vascular permeability in cultured human cells, zebrafish model, and Miles assay. Taken together, our data reveal acute and chronic VEGF exposures induce divergent signaling pathways and identify DDAH1 as a critical player and potentially a therapeutic target of vascular hyperpermeability-mediated pathogenesis.

14.
Nat Commun ; 12(1): 3453, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103484

RESUMO

A once every eight-week cabotegravir (CAB) long-acting parenteral is more effective than daily oral emtricitabine and tenofovir disoproxil fumarate in preventing human immunodeficiency virus type one (HIV-1) transmission. Extending CAB dosing to a yearly injectable advances efforts for the elimination of viral transmission. Here we report rigor, reproducibility and mechanistic insights for a year-long CAB injectable. Pharmacokinetic (PK) profiles of this nanoformulated CAB prodrug (NM2CAB) are affirmed at three independent research laboratories. PK profiles in mice and rats show plasma CAB levels at or above the protein-adjusted 90% inhibitory concentration for a year after a single dose. Sustained native and prodrug concentrations are at the muscle injection site and in lymphoid tissues. The results parallel NM2CAB uptake and retention in human macrophages. NM2CAB nanocrystals are stable in blood and tissue homogenates. The long apparent drug half-life follows pH-dependent prodrug hydrolysis upon slow prodrug nanocrystal dissolution and absorption. In contrast, solubilized prodrug is hydrolyzed in hours in plasma and tissues from multiple mammalian species. No toxicities are observed in animals. These results affirm the pharmacological properties and extended apparent half-life for a nanoformulated CAB prodrug. The report serves to support the mechanistic design for drug formulation safety, rigor and reproducibility.


Assuntos
Liberação Controlada de Fármacos , Lipídeos/química , Nanopartículas/química , Pró-Fármacos/farmacologia , Piridonas/farmacocinética , Animais , Composição de Medicamentos , Endocitose , Humanos , Cinética , Masculino , Camundongos Endogâmicos BALB C , Piridonas/administração & dosagem , Piridonas/sangue , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Distribuição Tecidual
15.
FEMS Microbiol Rev ; 45(6)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34160586

RESUMO

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to coronavirus disease 2019 (COVID-19). Virus-specific immunity controls infection, transmission and disease severity. With respect to disease severity, a spectrum of clinical outcomes occur associated with age, genetics, comorbidities and immune responses in an infected person. Dysfunctions in innate and adaptive immunity commonly follow viral infection. These are heralded by altered innate mononuclear phagocyte differentiation, activation, intracellular killing and adaptive memory, effector, and regulatory T cell responses. All of such affect viral clearance and the progression of end-organ disease. Failures to produce effective controlled antiviral immunity leads to life-threatening end-organ disease that is typified by the acute respiratory distress syndrome. The most effective means to contain SARS-CoV-2 infection is by vaccination. While an arsenal of immunomodulators were developed for control of viral infection and subsequent COVID-19 disease, further research is required to enable therapeutic implementation.


Assuntos
COVID-19 , Imunidade Adaptativa , Humanos , Imunidade Inata , SARS-CoV-2
16.
iScience ; 23(12): 101802, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33299973

RESUMO

Invasion and proliferation are defining phenotypes of cancer, and in glioblastoma blocking one stimulates the other, implying that effective therapy must inhibit both, ideally through a single target that is also dispensable for normal tissue function. The molecular motor myosin 10 meets these criteria. Myosin 10 knockout mice can survive to adulthood, implying that normal cells can compensate for its loss; its deletion impairs invasion, slows proliferation, and prolongs survival in murine models of glioblastoma. Myosin 10 deletion also enhances tumor dependency on the DNA damage and the metabolic stress responses and induces synthetic lethality when combined with inhibitors of these processes. Our results thus demonstrate that targeting myosin 10 is active against glioblastoma by itself, synergizes with other clinically available therapeutics, may have acceptable side effects in normal tissues, and has potential as a heretofore unexplored therapeutic approach for this disease.

17.
Nat Mater ; 19(8): 910-920, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32341511

RESUMO

Long-acting cabotegravir (CAB) extends antiretroviral drug administration from daily to monthly. However, dosing volumes, injection site reactions and health-care oversight are obstacles towards a broad usage. The creation of poloxamer-coated hydrophobic and lipophilic CAB prodrugs with controlled hydrolysis and tissue penetrance can overcome these obstacles. To such ends, fatty acid ester CAB nanocrystal prodrugs with 14, 18 and 22 added carbon chains were encased in biocompatible surfactants named NMCAB, NM2CAB and NM3CAB and tested for drug release, activation, cytotoxicity, antiretroviral activities, pharmacokinetics and biodistribution. Pharmacokinetics studies, performed in mice and rhesus macaques, with the lead 18-carbon ester chain NM2CAB, showed plasma CAB levels above the protein-adjusted 90% inhibitory concentration for up to a year. NM2CAB, compared with NMCAB and NM3CAB, demonstrated a prolonged drug release, plasma circulation time and tissue drug concentrations after a single 45 mg per kg body weight intramuscular injection. These prodrug modifications could substantially improve CAB's effectiveness.


Assuntos
Antirretrovirais/metabolismo , Nanoestruturas/química , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Piridonas/metabolismo , Animais , Antirretrovirais/farmacologia , Antirretrovirais/toxicidade , Transporte Biológico , Preparações de Ação Retardada , Composição de Medicamentos , Interações Medicamentosas , Estabilidade de Medicamentos , Camundongos , Piridonas/farmacologia , Piridonas/toxicidade
18.
Biochim Biophys Acta Biomembr ; 1861(12): 183061, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31513781

RESUMO

Senescent cells accumulate in various peripheral tissues during aging and have been shown to exacerbate age-related inflammatory responses. We recently showed that exposure to neurotoxic amyloid ß (Aß1-42) oligomers can readily induce a senescence phenotype in human brain microvascular endothelial cells (HBMECs). In the present work, we used atomic force microscopy (AFM) to further characterize the morphological properties such as cell membrane roughness and cell height and nanomechanical properties such as Young's modulus of the membrane (membrane stiffness) and adhesion resulting from the interaction between AFM tip and cell membrane in Aß1-42 oligomer-induced senescent human brain microvascular endothelial cells. Morphological imaging studies showed a flatter and spread-out nucleus in the senescent HBMECs, both characteristic features of a senescent phenotype. Furthermore, the mean cell body roughness and mean cell height were lower in senescent HBMECs compared to untreated normal HBMECs. We also observed increased stiffness and alterations in the adhesion properties in Aß1-42 oligomer-induced senescent endothelial cells compared to the untreated normal HBMECs suggesting dynamic reorganization of cell membrane. We then show that vascular endothelial growth factor receptor 1 (VEGFR-1) knockdown or overexpression of Rho GTPase Rac 1 in the endothelial cells inhibited senescence and reversed these nanomechanical alterations, confirming a direct role of these pathways in the senescent brain endothelial cells. These results illustrate that nanoindentation and topographic analysis of live senescent brain endothelial cells can provide insights into cerebrovascular dysfunction in neurodegenerative diseases such as Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Senescência Celular/fisiologia , Células Endoteliais/metabolismo , Doença de Alzheimer/metabolismo , Fenômenos Biomecânicos/fisiologia , Encéfalo/metabolismo , Técnicas de Cultura de Células , Membrana Celular/metabolismo , Endotélio Vascular/metabolismo , Humanos , Microscopia de Força Atômica/métodos , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Biochim Biophys Acta Gen Subj ; 1863(5): 802-812, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30763604

RESUMO

Atomic force microscope (AFM) is emerging as an immensely promising tool to study the cellular morphology with a nanometer scale resolution and to analyze nanomechanical properties (NPs) at various physiological conditions. Advancement of AFM technology enables studying living cells and differentiating cancer cell from normal cells based on topography and NPs. Though the trend overlaps from different literature; numerical values of nanomechanical readouts depict variations over a wide range. These anomalies are associated with the experimental setup under study. In this manuscript, we have identified heterogeneity in cell culture system in addition to the selection of AFM probe with specific tip geometry as the major contributors to the above mentioned anomalies. To test our hypothesis, we have used Panc1 cells, which is a pancreatic ductal adenocarcinoma cell type. Our results suggest that the cellular morphology, membrane roughness and NPs calculated from AFM study are distinctly influenced by cell cycle. Furthermore, we found that the NPs readout is also significantly associated with AFM tip geometries. The cells were found to be softer in their early resting phase when indented with pyramidal probe and became increasingly stiffer as they progressed through the cell cycles. On the contrary, when indented with the spherical probe, cells in G0/G1 phase were observed to be the stiffest. Such an exhaustive study of the role of cell cycle in influencing the NPs in Panc1 cell line along with the impact of tip geometry on NPs is the first of its kind, to the best of our knowledge.


Assuntos
Nanomedicina , Neoplasias Pancreáticas/patologia , Ciclo Celular , Humanos , Microscopia de Força Atômica , Células Tumorais Cultivadas
20.
Artigo em Inglês | MEDLINE | ID: mdl-29059797

RESUMO

A novel biosensing system capable of simultaneously sensing glucose and powering portable electronic devices such as a digital glucometer is described. The biosensing system consists of enzymatic glucose biofuel cell bioelectrodes functionalized with pyrolloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at the bioanode and biocathode, respectively. A dual-stage power amplification circuit is integrated with the single biofuel cell to amplify the electrical power generated. In addition, a capacitor circuit was incorporated to serve as the transducer for sensing glucose. The open circuit voltage of the optimized biofuel cell reached 0.55 V, and the maximum power density achieved was 0.23 mW/ cm2 at 0.29 V. The biofuel cell exhibited a sensitivity of 0.312 mW/mM.cm2 with a linear dynamic range of 3 mM - 20 mM glucose. The overall self-powered glucose biosensor is capable of selectively screening against common interfering species, such as ascorbate and urate and exhibited an operational stability of over 53 days, while maintaining 90 % of its activity. These results demonstrate the system's potential to replace the current glucose monitoring devices that rely on external power supply, such as a battery.


Assuntos
Técnicas Biossensoriais , Fontes de Energia Bioelétrica , Eletrodos , Enzimas Imobilizadas , Glucose , Glucose 1-Desidrogenase , Glucose Oxidase , Oxirredutases atuantes sobre Doadores de Grupo CH-CH
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA