Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diabetes ; 73(1): 23-37, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862464

RESUMO

We investigated the link between enhancement of SI (by hyperinsulinemic-euglycemic clamp) and muscle metabolites after 12 weeks of aerobic (high-intensity interval training [HIIT]), resistance training (RT), or combined training (CT) exercise in 52 lean healthy individuals. Muscle RNA sequencing revealed a significant association between SI after both HIIT and RT and the branched-chain amino acid (BCAA) metabolic pathway. Concurrently with increased expression and activity of branched-chain ketoacid dehydrogenase enzyme, many muscle amino metabolites, including BCAAs, glutamate, phenylalanine, aspartate, asparagine, methionine, and γ-aminobutyric acid, increased with HIIT, supporting the substantial impact of HIIT on amino acid metabolism. Short-chain C3 and C5 acylcarnitines were reduced in muscle with all three training modes, but unlike RT, both HIIT and CT increased tricarboxylic acid metabolites and cardiolipins, supporting greater mitochondrial activity with aerobic training. Conversely, RT and CT increased more plasma membrane phospholipids than HIIT, suggesting a resistance exercise effect on cellular membrane protection against environmental damage. Sex and age contributed modestly to the exercise-induced changes in metabolites and their association with cardiometabolic parameters. Integrated transcriptomic and metabolomic analyses suggest various clusters of genes and metabolites are involved in distinct effects of HIIT, RT, and CT. These distinct metabolic signatures of different exercise modes independently link each type of exercise training to improved SI and cardiometabolic risk. ARTICLE HIGHLIGHTS: We aimed to understand the link between skeletal muscle metabolites and cardiometabolic health after exercise training. Although aerobic, resistance, and combined exercise training each enhance muscle insulin sensitivity as well as other cardiometabolic parameters, they disparately alter amino and citric acid metabolites as well as the lipidome, linking these metabolomic changes independently to the improvement of cardiometabolic risks with each exercise training mode. These findings reveal an important layer of the unique exercise mode-dependent changes in muscle metabolism, which may eventually lead to more informed exercise prescription for improving SI.


Assuntos
Doenças Cardiovasculares , Treinamento Intervalado de Alta Intensidade , Humanos , Fatores de Risco Cardiometabólico , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Terapia por Exercício , Doenças Cardiovasculares/metabolismo
2.
Cell Metab ; 35(11): 1996-2010.e6, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37939659

RESUMO

Substantial divergence in cardio-metabolic risk, muscle size, and performance exists between men and women. Considering the pivotal role of skeletal muscle in human physiology, we investigated and found, based on RNA sequencing (RNA-seq), that differences in the muscle transcriptome between men and women are largely related to testosterone and estradiol and much less related to genes located on the Y chromosome. We demonstrate inherent unique, sex-dependent differences in muscle transcriptional responses to aerobic, resistance, and combined exercise training in young and older cohorts. The hormonal changes with age likely explain age-related differential expression of transcripts. Furthermore, in primary human myotubes we demonstrate the profound but distinct effects of testosterone and estradiol on amino acid incorporation to multiple individual proteins with specific functions. These results clearly highlight the potential of designing exercise programs tailored specifically to men and women and have implications for people who change gender by altering their hormone profile.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Masculino , Humanos , Feminino , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Exercício Físico/fisiologia , Testosterona/metabolismo , Testosterona/farmacologia , Estradiol/farmacologia
3.
Metabolomics ; 17(5): 47, 2021 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-33966131

RESUMO

INTRODUCTION: Hyperhomocysteinemia (HHCys) is an independent risk factor for various diseases such as cardiovascular diseases, Alzheimer's, and cancers. Folate deficiency is one of the significant reasons for HHCys. However, it is not known whether folate deficiency with HHCys is associated with any serum metabolites. OBJECTIVES: Our objective was to identify the metabolic alterations in people having folate deficiency with HHCys and check whether a short-term folic acid therapy could reverse those metabolic changes. METHODS: The study enrolled 34 participants aged between 18 and 40 years having folate deficiency (< 4.6 ng/mL) with HHCys (> 15 µmol/L) and 21 normal healthy individuals. A short-term intervention of oral folic acid (5 mg/day) was done in the HHCys group for 30 days. Untargeted metabolomics analysis of serum was performed in all study subjects before and after the folic acid treatment. Different univariate methods and the multivariable-adjusted linear regression models were employed to determine an association between homocysteine level and metabolite profile. RESULTS: Metabolomics analysis data showed that many metabolites involved in the biochemical pathways of lipid metabolisms such as polyunsaturated fatty acids, glycerolipids, and phospholipids were downregulated in the HHCys group. Short-term oral folic acid therapy significantly reduced their serum homocysteine level. However, the metabolic pathway alterations observed in folate-deficient HHCys-condition were unaltered even after the folic acid treatment. CONCLUSIONS: Our study revealed that people who have a folic acid deficiency with HHCys have an altered metabolite profile related to lipid metabolism, which cannot be reversed by short-term folic acid therapy.


Assuntos
Hiper-Homocisteinemia , Adolescente , Adulto , Ácido Fólico , Deficiência de Ácido Fólico/tratamento farmacológico , Homocisteína , Humanos , Hiper-Homocisteinemia/tratamento farmacológico , Metaboloma , Vitamina B 12 , Adulto Jovem
4.
Metabolomics ; 16(8): 87, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32772182

RESUMO

INTRODUCTION: Leptin is known to regulate pathways of energy metabolism, reproduction, and control appetite. Whether plasma leptin levels reflect changes in metabolites of these pathways is unknown. OBJECTIVES: We aimed to find whether there is an association between leptin levels and levels of metabolites of energy and hormone metabolism. METHODS: We performed an untargeted metabolomics analysis of plasma from 110 healthy adults (men: women = 1:1; aged 18-40 years), using liquid chromatography-tandem mass spectrometry. Blood samples were collected from all the study subjects in the fasting state. Clinical features and markers of obesity and Type 2 diabetes mellitus (T2DM) were assessed in all. The association between levels of metabolites and clinical and biochemical parameters was identified using the multivariable-adjusted linear regression model and PLS-DA analysis. RESULTS: The leptin level was found to have a significant association with a substantial number of metabolites in women and men. Leptin level was positively associated with glycocholic acid and arachidic acid, metabolites related to energy metabolisms, pregnanediol-3-glucuronide, a metabolite of progesterone metabolism, and quercetin 3'-sulfate, a diet-derived metabolite. Leptin level was negatively associated with ponasteroside A and barringtogenol C levels. Leptin level was positively correlated with adiponectin and negatively with total calorie intake and levels of triglyceride and very-low-density lipoprotein. Leptin levels were associated with lipid and sex hormone metabolism in women, while metabolites involved in amino acid metabolism were correlated to leptin in men. CONCLUSION: Our study indicates that leptin level reflects metabolome alterations and hence could be a useful marker to detect early changes in energy and hormone metabolisms.


Assuntos
Leptina/sangue , Adulto , Biomarcadores/sangue , Glicemia/metabolismo , Cromatografia Líquida/métodos , Dieta , Metabolismo Energético/fisiologia , Feminino , Humanos , Metabolismo dos Lipídeos , Lipídeos/sangue , Masculino , Metaboloma/fisiologia , Metabolômica/métodos , Obesidade/sangue , Espectrometria de Massas em Tandem/métodos
5.
Sci Rep ; 10(1): 353, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941993

RESUMO

While the risk factors for Type 2 diabetes (T2DM) are known, early predictive markers of transition from normal to a prediabetes state are unidentified. We studied the basal metabolism and metabolic response to a mixed-meal challenge in 110 healthy subjects in the age group of 18 to 40 years (Male:Female = 1:1); grouped into first degree relatives of patients with T2DM (n = 30), those with a body mass index >23 kg/m2 but <30 kg/m2 (n = 30), those with prediabetes (n = 20) and normal controls (n = 30). We performed an untargeted metabolomics analysis of plasma and related that with clinical and biochemical parameters, markers of inflammation, and insulin sensitivity. Similar to prediabetes subjects, overweight subjects had insulin resistance and significantly elevated levels of C-peptide, adiponectin and glucagon and lower level of ghrelin. Metabolites such as MG(22:2(13Z, 16Z)/0:0/0:0) and LysoPC (15:0) were reduced in overweight and prediabetes subjects. Insulin sensitivity was significantly lower in men. Fasting levels of uric acid, xanthine, and glycochenodeoxycholic-3-glucuronide were elevated in men. However, both lysophospholipids and antioxidant defense metabolites were higher in women. Impaired postprandial metabolism and insulin sensitivity in overweight normoglycemic young adults indicates a risk of developing hyperglycemia. Our results also indicate a higher risk of diabetes in young men.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Sobrepeso/metabolismo , Período Pós-Prandial , Adolescente , Adulto , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Suscetibilidade a Doenças , Feminino , Humanos , Resistência à Insulina , Masculino , Metabolômica , Sobrepeso/sangue , Fatores de Risco , Fatores Sexuais , Adulto Jovem
6.
Mol Cell Biochem ; 463(1-2): 147-160, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31595424

RESUMO

Amalaki rasayana, a traditional preparation, is widely used by Ayurvedic physicians for the treatment of inflammatory conditions, cardiovascular diseases, and cancer. Metabolic alterations induced by Amalaki rasayana intervention are unknown. We investigated the modulations in serum metabolomic profiles in Wistar rats following long-term oral administration of Amalaki rasayana. Global metabolic profiling was performed of the serum of rats administered with either Amalaki rasayana (AR) or ghee + honey (GH) for 18 months and control animals which were left untreated. Amalaki rasayana components were confirmed from AR extract using HR-LCMS analysis. Significant reductions in prostaglandin J2, 11-dehydrothromboxane B2, and higher levels of reduced glutathione and glycitein metabolites were observed in the serum of AR administered rats compared to the control groups. Eleven different metabolites classified as phospholipids, glycerophospholipids, glucoside derivatives, organic acids, and glycosphingolipid were exclusively observed in the AR administered rats. Pathway analysis suggests that altered metabolites in AR administered rats are those associated with different biochemical pathways of arachidonic acid metabolism, fatty acid metabolism, leukotriene metabolism, G-protein mediated events, phospholipid metabolism, and the immune system. Targeted metabolomics confirmed the presence of gallic acid, ellagic acid, and arachidonic acid components in the AR extract. The known activities of these components can be correlated with the altered metabolic profile following long-term AR administration. AR also activates IGF1R-Akt-Foxo3 signaling axis in heart tissues of rats administered with AR. Our study identifies AR components that induce alterations in lipid metabolism and immune pathways in animals which consume AR for an extended period.


Assuntos
Metabolismo dos Lipídeos , Metabolômica , Miocárdio , Extratos Vegetais/farmacologia , Prostaglandina D2/análogos & derivados , Transdução de Sinais , Animais , Glutationa/sangue , Glutationa/imunologia , Isoflavonas/sangue , Isoflavonas/imunologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/imunologia , Masculino , Miocárdio/imunologia , Miocárdio/metabolismo , Prostaglandina D2/biossíntese , Prostaglandina D2/imunologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Tromboxano B2/análogos & derivados , Tromboxano B2/sangue , Tromboxano B2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA