Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
J Infect Dev Ctries ; 18(4): 600-608, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38728644

RESUMO

INTRODUCTION: Human Mpox (formerly monkeypox) infection is an emerging zoonotic disease caused by the Mpox virus (MPXV). We describe the complete genome annotation, phylogeny, and mutational profile of a novel, sustained Clade I Mpox outbreak in the city of Kamituga in Eastern Democratic Republic of the Congo (DRC). METHODOLOGY: A cross-sectional, observational, cohort study was performed among patients of all ages admitted to the Kamituga Hospital with Mpox infection symptoms between late September 2023 and late January 2024. DNA was isolated from Mpox swabbed lesions and sequenced followed by phylogenetic analysis, genome annotation, and mutational profiling. RESULTS: We describe an ongoing Clade I Mpox outbreak in the city of Kamituga, South Kivu Province, Democratic Republic of Congo. Whole-genome sequencing of the viral RNA samples revealed, on average, 201.5 snps, 28 insertions, 81 deletions, 2 indels, 312.5 total variants, 158.3 amino acid changes, 81.66 intergenic variants, 72.16 synonymous mutations, 106 missense variants, 41.16 frameshift variants, and 3.33 inframe deletions across six samples. By assigning mutations at the proteome level for Kamituga MPXV sequences, we observed that seven proteins, namely, C9L (OPG047), I4L (OPG080), L6R (OPG105), A17L (OPG143), A25R (OPG151), A28L (OPG153), and B21R (OPG210) have emerged as hot spot mutations based on the consensuses inframe deletions, frameshift variants, synonymous variants, and amino acids substitutions. Based on the outcome of the annotation, we found a deletion of the D14L (OPG032) gene in all six samples. Following phylogenetic analysis and whole genome assembly, we determined that this cluster of Mpox infections is genetically distinct from previously reported Clade I outbreaks, and thus propose that the Kamituga Mpox outbreak represents a novel subgroup (subgroup VI) of Clade I MPXV. CONCLUSIONS: Here we report the complete viral genome for the ongoing Clade I Mpox Kamituga outbreak for the first time. This outbreak presents a distinct mutational profile from previously sequenced Clade I MPXV oubtreaks, suggesting that this cluster of infections is a novel subgroup (we term this subgroup VI). These findings underscore the need for ongoing vigilance and continued sequencing of novel Mpox threats in endemic regions.


Assuntos
Genoma Viral , Monkeypox virus , Mpox , Filogenia , Sequenciamento Completo do Genoma , Humanos , República Democrática do Congo/epidemiologia , Estudos Transversais , Monkeypox virus/genética , Monkeypox virus/classificação , Masculino , Mpox/virologia , Mpox/epidemiologia , Feminino , Adulto , Surtos de Doenças , Mutação , Adolescente , Adulto Jovem , Criança , Pré-Escolar , Pessoa de Meia-Idade , Estudos de Coortes
2.
mBio ; 15(5): e0018424, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38624207

RESUMO

Microorganisms resist fluoride toxicity using fluoride export proteins from one of several different molecular families. Cariogenic species Streptococcus mutans and Candida albicans extrude intracellular fluoride using a CLCF F-/H+ antiporter and FEX fluoride channel, respectively, whereas oral commensal eubacteria, such as Streptococcus gordonii, export fluoride using a Fluc fluoride channel. In this work, we examine how genetic knockout of fluoride export impacts pathogen fitness in single-species and three-species dental biofilm models. For biofilms generated using S. mutans with the genetic knockout of the CLCF transporter, exposure to low fluoride concentrations decreased S. mutans counts, synergistically reduced the populations of C. albicans, increased the relative proportion of oral commensal S. gordonii, and reduced properties associated with biofilm pathogenicity, including acid production and hydroxyapatite dissolution. Biofilms prepared with C. albicans with genetic knockout of the FEX channel also exhibited reduced fitness in the presence of fluoride but to a lesser degree. Imaging studies indicate that S. mutans is highly sensitive to fluoride, with the knockout strain undergoing complete lysis when exposed to low fluoride for a moderate amount of time. Biochemical purification of the S. mutans CLCF transporter and functional reconstitution establishes that the functional protein is a dimer encoded by a single gene. Together, these findings suggest that fluoride export by oral pathogens can be targeted by specific inhibitors to restore biofilm symbiosis in dental biofilms and that S. mutans is especially susceptible to fluoride toxicity. IMPORTANCE: Dental caries is a globally prevalent condition that occurs when pathogenic species, including Streptococcus mutans and Candida albicans, outcompete beneficial species, such as Streptococcus gordonii, in the dental biofilm. Fluoride is routinely used in oral hygiene to prevent dental caries. Fluoride also has antimicrobial properties, although most microbes possess fluoride exporters to resist its toxicity. This work shows that sensitization of cariogenic species S. mutans and C. albicans to fluoride by genetic knockout of fluoride exporters alters the microbial composition and pathogenic properties of dental biofilms. These results suggest that the development of drugs that inhibit fluoride exporters could potentiate the anticaries effect of fluoride in over-the-counter products like toothpaste and mouth rinses. This is a novel strategy to treat dental caries.


Assuntos
Biofilmes , Candida albicans , Fluoretos , Streptococcus gordonii , Streptococcus mutans , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/fisiologia , Candida albicans/metabolismo , Streptococcus mutans/genética , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/metabolismo , Streptococcus mutans/fisiologia , Fluoretos/farmacologia , Fluoretos/metabolismo , Streptococcus gordonii/efeitos dos fármacos , Streptococcus gordonii/genética , Streptococcus gordonii/fisiologia , Streptococcus gordonii/metabolismo , Técnicas de Inativação de Genes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cárie Dentária/microbiologia
3.
AoB Plants ; 16(2): plae014, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38566894

RESUMO

Exitrons are exonic introns. This subclass of intron retention alternative splicing does not contain a Pre-Terminating stop Codon. Therefore, when retained, they are always a part of a protein. Intron retention is a frequent phenomenon predominantly found in plants, which results in either the degradation of the transcripts or can serve as a stable intermediate to be processed upon induction by specific signals or the cell status. Interestingly, exitrons have coding ability and may confer additional attributes to the proteins that retain them. Therefore, exitron-containing and exitron-spliced isoforms will be a driving force for creating protein diversity in the proteome of an organism. This review establishes a basic understanding of exitron, discussing its genesis, key features, identification methods and functions. We also try to depict its other potential roles. The present review also aims to provide a fundamental background to those who found such exitronic sequences in their gene(s) and to speculate the future course of studies.

4.
Sci Rep ; 14(1): 9430, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658595
5.
J Environ Manage ; 358: 120915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640753

RESUMO

The demand for paper and paper-based packaging has seen a massive increase in past years, resulting in accelerated deforestation to meet the rising demand, negatively impacting the environment, and there is a need to look towards different non-woody raw materials. Kraft pulping (KP) is widely used in paper making, for which the chemical dose, temperature, time, and energy required must be optimized, for which many insignificant experimental trials are performed. An effort is made to solve this problem by developing the regression equations with the help of Excel using One Factor at a Time Analysis (OFAT), followed by carrying out design of experiments (DoE) using orthogonal approach and regression analysis in Minitab software. Life cycle Assessment (LCA) using the Open-LCA software estimates the effect of chemicals and energy required during pulping on human health, ecosystem quality, and resource depletion. Using regression analysis, the equations for predicting kappa number, yield (%), total energy consumed, and mechanical properties of the paper sheet showed a good fit with an R2 value in the range of 0.90-0.99. Apart from that, the mechanical properties, namely tensile index (41.43 Nm/g), tear index (6.96 mN m2/g), bending stiffness (0.5 mN m), and burst index (3.92 kPa m2/g) of the unbeaten sheet, were determined experimentally at optimized conditions. Based on the Open-LCA result, the optimized pulping conditions had less impact on human health, ecosystem quality, and resource depletion. Industries can use the model to predict the values of kappa number, yield, mechanical properties, and energy consumption without performing optimization experiments that may impact the industry's economy to a greater extent.


Assuntos
Papel , Triticum , Análise de Regressão , Conservação dos Recursos Naturais
6.
J Food Sci Technol ; 61(5): 813-832, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38487289

RESUMO

Fruit ripening is an unfolding of a series of genetically-programmed modifications and tend to be highly orchestrated irrevocable phenomenon mediated by ethylene. Phytohormone ethylene also leads to over-ripening, senescence, loss of texture, microbial attack, reduced post-harvest life and other associated problems during storage and transportation of fruits. Its harmful impacts on fresh fruits, vegetables, and ornamentals result in substantial product losses even up to 80%. Curbing of this inevitable menace is therefore need of the hour. Accrual of ethylene in packaging system should fundamentally be ducked to extend the shelf-life and uphold an adequate superiority of perishables in visual and organoleptic terms. The current review discusses about properties, factors affecting and impact of ethylene, intimidation of its impact at gene vis-à-vis activity level using gene-modification/inhibition techniques, chemical/physical in conjunction with other suitable approaches. It also entails the most commercially cultivated approaches worldwide viz. KMnO4-based oxidation together with adsorption-based scrubbing of ethylene in thorough details. Future ethylene removal strategies should focus on systematic evaluation of KMnO4-based scavenging, exploring the mechanism of adsorption, adsorbent(s) behavior in the presence of other gases and their partial pressures, volatiles, temperature, relative humidity, development of hydrophobic adsorbents to turn-up under high RH, regeneration of adsorbent by desorption, improvement in photocatalytic oxidation etc. and further improvements thereof. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05777-1.

7.
EJNMMI Radiopharm Chem ; 9(1): 25, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530487

RESUMO

BACKGROUND: The urgent demand for innovative theranostic strategies to combat bacterial resistance to antibiotics is evident, with substantial implications for global health. Rapid diagnosis of life-threatening infections can expedite treatment, improving patient outcomes. Leveraging diagnostic modalities i.e., positron emission tomography (PET) and single photon emission computed tomography (SPECT) for detecting focal infections has yielded promising results. Augmenting the sensitivity of current PET and SPECT tracers could enable effective imaging of pathogenic bacteria, including drug-resistant strains.UBI (29-41), an antimicrobial peptide (AMP) fragment recognizes the S. aureus membrane through electrostatic binding. Radiolabeled UBI (29-41) is a promising SPECT and PET-based tracer for detecting focal infections. 2-APBA (2-acetyl-phenyl-boronic acid), a non-natural amino acid, specifically targets lysyl-phosphatidyl-glycerol (lysyl-PG) on the S. aureus membranes, particularly in AMP-resistant strains. We propose that combining UBI with 2-APBA could enhance the diagnostic potential of radiolabeled UBI. RESULTS: Present work aimed to compare the diagnostic potential of two radiolabeled peptides, namely UBI (29-41) and 2-APBA modified UBI (29-41), referred to as UBI and UBI-APBA. APBA modification imparted antibacterial activity to the initially non-bactericidal UBI against S. aureus by inducing a loss of membrane potential. The antibacterial activity demonstrated by UBI-APBA can be ascribed to the synergistic interaction of both UBI and UBI-APBA on the bacterial membrane. To enable PET imaging, we attached the chelator 1,4,7-triazacyclononane 1-glutaric acid 4,7-acetic acid (NODAGA) to the peptides for complexation with the positron emitter Gallium-68 (68Ga). Both NODAGA conjugates were radiolabeled with 68Ga with high radiochemical purity. The resultant 68Ga complexes were stable in phosphate-buffered saline and human serum. Uptake of these complexes was observed in S. aureus but not in mice splenocytes, indicating the selective nature of their interaction. Additionally, the APBA conjugate exhibited superior uptake in S. aureus while preserving the selectivity of the parent peptide. Furthermore, [68Ga]Ga-UBI-APBA demonstrated accumulation at the site of infection in rats, with an improved target-to-non-target ratio, as evidenced by ex-vivo biodistribution and PET imaging. CONCLUSIONS: Our findings suggest that linking UBI, as well as AMPs in general, with APBA shows promise as a strategy to augment the theranostic potential of these molecules.

8.
Small ; : e2310082, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470193

RESUMO

Electrochemical conversion of nitrate, a prevalent water pollutant, to ammonia (NH3 ) is a delocalized and green path for NH3 production. Despite the existence of different nitrate reduction pathways, selectively directing the reaction pathway on the road to NH3 is now hindered by the absence of efficient catalysts. Single-atom catalysts (SACs) are extensively investigated in a wide range of catalytic processes. However, their application in electrocatalytic nitrate reduction reaction (NO3 - RR) to NH3 is infrequent, mostly due to their pronounced inclination toward hydrogen evolution reaction (HER). Here, Ni single atoms on the electrochemically active carrier boron, nitrogen doped-graphene (BNG) matrix to modulate the atomic coordination structure through a boron-spanning strategy to enhance the performance of NO3 - RR is designed. Density functional theory (DFT) study proposes that BNG supports with ionic characteristics, offer a surplus electric field effect as compared to N-doped graphene, which can ease the nitrate adsorption. Consistent with the theoretical studies, the as-obtained NiSA@BNG shows higher catalytic activity with a maximal NH3 yield rate of 168 µg h-1  cm-2 along with Faradaic efficiency of 95% and promising electrochemical stability. This study reveals novel ways to rationally fabricate SACs' atomic coordination structure with tunable electronic properties to enhance electrocatalytic performance.

9.
Small ; : e2310431, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441366

RESUMO

Innovative advances in the exploitation of effective electrocatalytic materials for the reduction of nitrogen (N2 ) to ammonia (NH3 ) are highly required for the sustainable production of fertilizers and zero-carbon emission fuel. In order to achieve zero-carbon footprints and renewable NH3 production, electrochemical N2 reduction reaction (NRR) provides a favorable energy-saving alternative but it requires more active, efficient, and selective catalysts. In current work, sulfur vacancy (Sv)-rich NiCo2 S4 @MnO2 heterostructures are efficaciously fabricated via a facile hydrothermal approach followed by heat treatment. The urchin-like Sv-NiCo2 S4 @MnO2 heterostructures serve as cathodes, which demonstrate an optimal NH3 yield of 57.31 µg h-1  mgcat -1 and Faradaic efficiency of 20.55% at -0.2 V versus reversible hydrogen electrode (RHE) in basic electrolyte owing to the synergistic interactions between Sv-NiCo2 S4 and MnO2 . Density functional theory (DFT) simulation further verifies that Co-sites of urchin-like Sv-NiCo2 S4 @MnO2 heterostructures are beneficial to lowering the energy threshold for N2 adsorption and successive protonation. Distinctive micro/nano-architectures exhibit high NRR electrocatalytic activities that might motivate researchers to explore and concentrate on the development of heterostructures for ambient electrocatalytic NH3 generation.

10.
Adv Mater ; 36(21): e2313086, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38341608

RESUMO

A new strategy that can effectively increase the nitrogen reduction reaction performance of catalysts is proposed and verified by tuning the coordination number of metal atoms. It is found that the intrinsic activity of Mn atoms in the manganese borides (MnBx) increases in tandem with their coordination number with B atoms. Electron-deficient boron atoms are capable of accepting electrons from Mn atoms, which enhances the adsorption of N2 on the Mn catalytic sites (*) and the hydrogenation of N2 to form *NNH intermediates. Furthermore, the increase in coordination number reduces the charge density of Mn atoms at the Fermi level, which facilitates the desorption of ammonia from the catalyst surface. Notably, the MnB4 compound with a Mn coordination number of up to 12 exhibits a high ammonia yield rate (74.9 ± 2.1 µg h-1 mgcat -1) and Faradaic efficiency (38.5 ± 2.7%) at -0.3 V versus reversible hydrogen electrode (RHE) in a 0.1 m Li2SO4 electrolyte, exceeding those reported for other boron-related catalysts.

11.
J AOAC Int ; 107(3): 479-486, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38366611

RESUMO

BACKGROUND: Emergence and dissemination of antibiotic resistance is one of the major risks associated with the rampant usage of antibiotics in food-producing animals including aquaculture. OBJECTIVE: To determine Epidemiological Cut-OFF (ECOFF) values of heterotrophic bacterial populations from shrimp culture environments against five different antibiotics. METHODS: In this present study, bacterial samples were isolated from Penaeus vannamei culture environment in different locations of Andhra Pradesh, which is the aquaculture hub of India. The bacterial isolates were assessed for antibiotic resistance towards five antibiotics belonging to different classes (oxytetracycline, chloramphenicol, erythromycin, ciprofloxacin, and co-trimoxazole) by the disc diffusion method. Determination of Epidemiological Cut-OFF (ECOFF) values and analysis by employing normalized resistance interpretation (NRI) was carried out. RESULTS: The most dominant bacterial populations from shrimp culture were Vibrio spp. (pathogenic bacteria) followed by Bacillus spp. (probiotic bacteria). The bacterial isolates showed highest resistance towards oxytetracycline (overall 23.38%) and in location L6 (59.4%) followed by co-trimoxazole (31.1%). ECOFF values calculated by employing NRI showed that the disc diffusion data were distributed in a normalized manner. The maximum ECOFF value was obtained for ciprofloxacin (23.32 mm), while the minimum value was observed for oxytetracycline (9.05 mm). The antibiotic resistant phenotypes showed that the majority of the heterotrophic bacterial isolates (>60%) belonged to the non-wild type phenotype and primarily towards oxytetracycline (90%). CONCLUSION: The presence of non-wild antibiotic-resistant phenotypes of heterotrophic bacterial populations (which include not only pathogenic bacteria but also probiotic bacteria) indicates that shrimp culture ponds may be a reservoir for drug-resistant bacteria and there is a greater risk associated with transmission of resistant genes across bacterial flora. HIGHLIGHTS: NRI analysis of antibiotic disc diffusion data of heterotrophic bacterial populations in shrimp aquaculture environments revealed that majority of them belonged to non-wild type (90%) paticularly to oxytetracycline in comparison to other studied antibiotics (chloramphenicol, erythromycin, ciprofloxacin and co-trimoxazole).


Assuntos
Antibacterianos , Aquicultura , Penaeidae , Animais , Penaeidae/microbiologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/classificação , Índia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana , Processos Heterotróficos , Vibrio/efeitos dos fármacos , Vibrio/genética , Vibrio/isolamento & purificação
12.
ACS Appl Mater Interfaces ; 16(8): 10335-10343, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38376994

RESUMO

The quest to mimic the multistate synapses for bioinspired computing has triggered nascent research that leverages the well-established magnetic tunnel junction (MTJ) technology. Early works on the spin transfer torque MTJ-based artificial neural network (ANN) are susceptible to poor thermal reliability, high latency, and high critical current densities. Meanwhile, work on spin-orbit torque (SOT) MTJ-based ANN mainly utilized domain wall motion, which yields negligibly small readout signals differentiating consecutive states and has designs that are incompatible with technological scale-up. Here, we propose a multistate device concept built upon a compound MTJ consisting of multiple SOT-MTJs (number of MTJs, n = 1-4) on a shared write channel, mimicking the spin-based ANN. The n + 1 resistance states representing varying synaptic weights can be tuned by varying the voltage pulses (±1.5-1.8 V), pulse duration (100-300 ns), and applied in-plane fields (5.5-10.5 mT). A large TMR difference of more than 13.6% is observed between two consecutive states for the 4-cell compound MTJ, a 4-fold improvement from reported state-of-the-art spin-based synaptic devices. The ANN built upon the compound MTJ shows high learning accuracy for digital recognition tasks with incremental states and retraining, achieving test accuracy as high as 95.75% in the 4-cell compound MTJ. These results provide an industry-compatible platform to integrate these multistate SOT-MTJ synapses directly into neuromorphic architecture for in-memory and unconventional computing applications.

13.
NAR Genom Bioinform ; 6(1): lqae018, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38385146

RESUMO

The decreasing cost of whole genome sequencing has produced high volumes of genomic information that require annotation. The experimental identification of promoter sequences, pivotal for regulating gene expression, is a laborious and cost-prohibitive task. To expedite this, we introduce the Comprehensive Directory of Bacterial Promoters (CDBProm), a directory of in-silico predicted bacterial promoter sequences. We first identified that an Extreme Gradient Boosting (XGBoost) algorithm would distinguish promoters from random downstream regions with an accuracy of 87%. To capture distinctive promoter signals, we generated a second XGBoost classifier trained on the instances misclassified in our first classifier. The predictor of CDBProm is then fed with over 55 million upstream regions from more than 6000 bacterial genomes. Upon finding potential promoter sequences in upstream regions, each promoter is mapped to the genomic data of the organism, linking the predicted promoter with its coding DNA sequence, and identifying the function of the gene regulated by the promoter. The collection of bacterial promoters available in CDBProm enables the quantitative analysis of a plethora of bacterial promoters. Our collection with over 24 million promoters is publicly available at https://aw.iimas.unam.mx/cdbprom/.

14.
Biology (Basel) ; 13(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38392343

RESUMO

Poxviridae is a family of large, complex, enveloped, and double-stranded DNA viruses. The members of this family are ubiquitous and well known to cause contagious diseases in humans and other types of animals as well. Taxonomically, the poxviridae family is classified into two subfamilies, namely Chordopoxvirinae (affecting vertebrates) and Entomopoxvirinae (affecting insects). The members of the Chordopoxvirinae subfamily are further divided into 18 genera based on the genome architecture and evolutionary relationship. Of these 18 genera, four genera, namely Molluscipoxvirus, Orthopoxvirus, Parapoxvirus, and Yatapoxvirus, are known for infecting humans. Some of the popular members of poxviridae are variola virus, vaccine virus, Mpox (formerly known as monkeypox), cowpox, etc. There is still a pressing demand for the development of effective vaccines against poxviruses. Integrated immunoinformatics and artificial-intelligence (AI)-based methods have emerged as important approaches to design multi-epitope vaccines against contagious emerging infectious diseases. Despite significant progress in immunoinformatics and AI-based techniques, limited methods are available to predict the epitopes. In this study, we have proposed a unique method to predict the potential antigens and T-cell epitopes for multiple poxviruses. With PoxiPred, we developed an AI-based tool that was trained and tested with the antigens and epitopes of poxviruses. Our tool was able to locate 3191 antigen proteins from 25 distinct poxviruses. From these antigenic proteins, PoxiPred redundantly located up to five epitopes per protein, resulting in 16,817 potential T-cell epitopes which were mostly (i.e., 92%) predicted as being reactive to CD8+ T-cells. PoxiPred is able to, on a single run, identify antigens and T-cell epitopes for poxviruses with one single input, i.e., the proteome file of any poxvirus.

15.
ACS Sustain Resour Manag ; 1(2): 237-249, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38414817

RESUMO

During stemwood harvesting, substantial volumes of logging residues are produced as a side stream. Nevertheless, industrially feasible processing methods supporting their use for other than energy generation purposes are scarce. Thus, the present study focuses on biorefinery processing, employing response surface methodology to optimize the pressurized extraction of industrially assorted needle-rich spruce logging residues with four solvents. Eighteen experimental points, including eight center point replicates, were used to optimize the extraction temperature (40-135 °C) and time (10-70 min). The extraction optimization for water, water with Na2CO3 + NaHSO3 addition, and aqueous ethanol was performed using yield, total dissolved solids (TDS), antioxidant activity (FRAP, ORAC), antibacterial properties (E. coli, S. aureus), total phenolic content (TPC), condensed tannin content, and degree of polymerization. For limonene, evaluated responses were yield, TDS, antioxidant activity (CUPRAC, DPPH), and TPC. Desirability surfaces were created using the responses showing a coefficient of determination (R2) > 0.7, statistical significance (p ≤ 0.05), precision > 4, and statistically insignificant lack-of-fit (p > 0.1). The optimal extraction conditions were 125 °C and 68 min for aqueous ethanol, 120 °C and 10 min for water, 111 °C and 49 min for water with Na2CO3 + NaHSO3 addition, and 134 °C and 41 min for limonene. The outcomes contribute insights to industrial logging residue utilization for value-added purposes.

16.
Small Methods ; : e2301628, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412410

RESUMO

The present study details the strategic development of Co-doped CuO nanostructures via sophisticated and expedited pulsed laser ablation in liquids (PLAL) technique. Subsequently, these structures are employed as potent electrocatalysts for the anodic methanol oxidation reaction (MOR), offering an alternative to the sluggish oxygen evolution reaction (OER). Electrochemical assessments indicate that the Co-CuO catalyst exhibits exceptional MOR activity, requiring a reduced potential of 1.42 V at 10 mA cm-2 compared to that of pure CuO catalyst (1.57 V at 10 mA cm-2 ). Impressively, the Co-CuO catalyst achieved a nearly 180 mV potential reduction in MOR compared to its OER performance (1.60 V at 10 mA cm-2 ). Furthermore, when pairing Co-CuO(+)ǀǀPt/C(-) in methanol electrolysis, the cell voltage required is only 1.51 V at 10 mA cm-2 , maintaining remarkable stability over 12 h. This represents a substantial voltage reduction of ≈160 mV relative to conventional water electrolysis (1.67 V at 10 mA cm-2 ). Additionally, both in situ/operando Raman spectroscopy studies and theoretical calculations have confirmed that Co-doping plays a crucial role in enhancing the activity of the Co-CuO catalyst. This research introduces a novel synthetic approach for fabricating high-efficiency electrocatalysts for large-scale hydrogen production while co-synthesizing value-added formic acid.

17.
Cancer Biother Radiopharm ; 39(1): 64-74, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38363819

RESUMO

Background: Radiolabeled antibody fragments present a promising opportunity as theranostic agents, offering distinct advantages over whole antibodies. In this study, the authors investigate the potential of [177Lu]Lu-DTPA-F(ab')2-pertuzumab as a theranostic agent for precise targeting of human epidermal growth factor receptor 2 (HER2)-positive cancers. Additionally, the authors aim to quantitatively assess the binding synergism in the presence of cold trastuzumab. Materials and Methods: F(ab')2-pertuzumab was prepared by pepsin digestion and conjugated with a bifunctional chelator. The immunoconjugate was radiolabeled with 177Lu and characterized by chromatography techniques. Binding parameters (affinity, specificity, and immunoreactivity) and cellular binding enhancement studies were evaluated in HER2-overexpressing and triple-negative cell lines. The in vivo enhancement in tumor uptake of the radiolabeled immunoformulation was assessed in severe combined immunodeficient (SCID) mice bearing tumors, both in the presence and absence of unlabeled trastuzumab. Results: The formulation of [177Lu]Lu-DTPA-F(ab')2-pertuzumab could be prepared in high yields and with consistent radiochemical purity, ensuring reproducibility. Comprehensive in vitro and in vivo evaluation studies confirmed high specificity and immunoreactivity of the formulation toward HER2 receptors. Binding synergism of radiolabeled pertuzumab fragments in the presence of trastuzumab to HER2 receptors was observed. Conclusions: The radioformulation of [177Lu]Lu-DTPA-F(ab')2-pertuzumab holds great promise as a targeted approach for addressing HER2-positive cancers. A potentially effective strategy to amplify therapeutic efficacy involves dual epitope targeting by combining radiolabeled pertuzumab with cold trastuzumab.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias , Receptor ErbB-2 , Animais , Camundongos , Humanos , Reprodutibilidade dos Testes , Camundongos SCID , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Neoplasias/tratamento farmacológico , Ácido Pentético , Linhagem Celular Tumoral
18.
Nanomedicine (Lond) ; 19(1): 59-77, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197375

RESUMO

Sentinel lymph node (SLN) detection and biopsy is a critical staging component for several cancers. Apart from established methods using dyes or radiolabeled colloids, newer techniques are emerging, like near-infrared fluorescent compounds, targeted molecular radiopharmaceuticals and magnetic nano-tracers. In the overview section of this review, we categorize SLN detection tracers based on their principle of use. We discuss the merits of existing tracers and provide a glimpse of in-development formulations. A subsequent clinical section explores the expanded role of SLN detection in management of various cancers, citing current medical guidelines and the leading conclusions of long-term clinical trials. The concluding section tries to provide a perspective of promising developments and the work required to bring them to clinical fruition.


Assuntos
Linfonodo Sentinela , Humanos , Linfonodo Sentinela/diagnóstico por imagem , Biópsia de Linfonodo Sentinela/métodos , Metástase Linfática , Compostos Radiofarmacêuticos , Corantes , Linfonodos/diagnóstico por imagem
19.
J Biol Chem ; 300(2): 105657, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224949

RESUMO

The yeast Snf1/AMP-activated kinase (AMPK) maintains energy homeostasis, controlling metabolic processes and glucose derepression in response to nutrient levels and environmental cues. Under conditions of nitrogen or glucose limitation, Snf1 regulates pseudohyphal growth, a morphological transition characterized by the formation of extended multicellular filaments. During pseudohyphal growth, Snf1 is required for wild-type levels of inositol polyphosphate (InsP), soluble phosphorylated species of the six-carbon cyclitol inositol that function as conserved metabolic second messengers. InsP levels are established through the activity of a family of inositol kinases, including the yeast inositol polyphosphate kinase Kcs1, which principally generates pyrophosphorylated InsP7. Here, we report that Snf1 regulates Kcs1, affecting Kcs1 phosphorylation and inositol kinase activity. A snf1 kinase-defective mutant exhibits decreased Kcs1 phosphorylation, and Kcs1 is phosphorylated in vivo at Ser residues 537 and 646 during pseudohyphal growth. By in vitro analysis, Snf1 directly phosphorylates Kcs1, predominantly at amino acids 537 and 646. A yeast strain carrying kcs1 encoding Ser-to-Ala point mutations at these residues (kcs1-S537A,S646A) shows elevated levels of pyrophosphorylated InsP7, comparable to InsP7 levels observed upon deletion of SNF1. The kcs1-S537A,S646A mutant exhibits decreased pseudohyphal growth, invasive growth, and cell elongation. Transcriptional profiling indicates extensive perturbation of metabolic pathways in kcs1-S537A,S646A. Growth of kcs1-S537A,S646A is affected on medium containing sucrose and antimycin A, consistent with decreased Snf1p signaling. This work identifies Snf1 phosphorylation of Kcs1, collectively highlighting the interconnectedness of AMPK activity and InsP signaling in coordinating nutrient availability, energy homoeostasis, and cell growth.


Assuntos
Fosfotransferases (Aceptor do Grupo Fosfato) , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Inositol/metabolismo , Fosforilação , Polifosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Food Res Int ; 177: 113907, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225146

RESUMO

Substantial efforts are underway to tackle the current challenges of sustainability and environmental impacts linked to orthodox animal agriculture. This had led to advancement in food innovation guiding the fabrication of edible scaffolds based cultured meat. This current research work aims to develop and validate a new approach in fabricating a 3D porous scaffold of decellularized apple coated with a polymer mixture of gelatin/alginate for cultivated meat production. The fabricated noncoated (A) and coated (CA) 3D scaffolds presented different ratios of pore sizes with the medium-sized pores (100-250 µm) being higher in the case of CA. The water absorption capacity of CA (∼64 %) was almost two folds compared to A (∼31 %) with delayed digestion in the presence of gastric simulated juice with or without pepsin. Both the scaffolds showed the capability to adhere and proliferate muscle satellite cells as single cell culture and muscle satellite along with NIH/3T3 fibroblast cells as co-culture. However, the CA scaffolds showed enhanced capability to adhere and proliferate the two cell lines on its surface compared to A. This work demonstrates an efficient way to fabricate decellularized plant scaffolds with high potential to be used in the production of cultured meat for the food industry.


Assuntos
Malus , Alicerces Teciduais , Animais , Alginatos , Gelatina , Carne in vitro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA