Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 789: 148051, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34323847

RESUMO

The state of Punjab has a dominant agrarian economy and is considered India's bread basket. However, it is now under the problem of falling agro-economy primarily because of pervasive depletion of groundwater levels and deteriorating groundwater quality in south-west Punjab, but increasing salinity is a major concern. The irrigation requirements of crops are fulfilled by groundwater and canal water but the introduction of canal irrigation has led to waterlogging and subsequent salinization rendering large fertile-land areas becoming unproductive mainly in the south-western part of Punjab. There was an apprehension that excessive withdrawal of groundwater might have caused a reversal of natural groundwater flow pattern that might have caused ingress of saline water into fresh groundwater region of central Punjab. To address the apprehension related to the rise in groundwater salinity and its subsequent ingression in the fresh-water zone and suggest suitable management solutions, a study was undertaken to analyse the data related to salinity, isotopes, land-use and land cover (LULC) along with field and laboratory experimental results. The depth-wise isotope analysis shows that there is a large variation in isotopic signatures of shallow and intermediate aquifers and it decreases with the depth of aquifers (150-250 m). It appears that very deep groundwater (>250 m) is relatively isolated and does not show a large variation or mixing effect. Tritium analysis shows that dynamic groundwater is actively recharged through canal, river, and/or rain. The presence of modern groundwater at deeper depth indicates a good interconnection between shallow and deep groundwater. Interpretations of the results show that the canal is the main source of groundwater recharge in south-west Punjab and the evaporation process is responsible for increasing the salinity hazard. In the central parts of Punjab, groundwater and rain are the main sources of groundwater recharge, while rain is the main source of groundwater recharge in the Kandi area. In the south-west Punjab, some primary salinity has formed as a result of mineral dissolution which has further increased due to evaporative enrichment.

2.
Isotopes Environ Health Stud ; 51(3): 426-38, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26332982

RESUMO

A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.


Assuntos
Atmosfera/química , Monitoramento Ambiental/métodos , Água/análise , Deutério/análise , Índia , Modelos Teóricos , Isótopos de Oxigênio/análise , Estações do Ano , Volatilização
3.
Environ Monit Assess ; 148(1-4): 265-76, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18256900

RESUMO

In this study, an attempt has been made to work out water balance, determine rate of sedimentation and physico-chemical analysis of the lake water. The water balance is carried out using the mass balance equation to account for various input and output components. Sedimentation rates and pattern are estimated using (137)Cs and (210)Pb radiometric dating techniques. The physico-chemical analysis of the lake water is done by collecting samples from twelve locations of the lake at three different depths. The major inflow to the lake is catchment runoff, which accounts for nearly 56% of the total annual inflow and about 98% inflow takes place during monsoon period. The major outflow from the lake is weir overflow, which occurs in monsoon season only and accounts for about 85% of the total annual outflow. The estimated mean sedimentation rate in the lake is 0.58 +/- 0.028 cm/year. The estimated useful life of the lake based on post-1964 (appearance of the major peak of (137)Cs due to weapon fallout record pattern) average sedimentation rate is around 467 +/- 23 years. The lake has attained the hyper-eutrophic state due to high nitrogen and phosphorous contents in the lake water. Based on the trophic state index (TSI), the lake has become unsuitable for drinking, bathing and even for fish culture.


Assuntos
Monitoramento Ambiental , Água Doce/análise , Sedimentos Geológicos/química , Movimentos da Água , Animais , Eutrofização , Humanos , Índia , Datação Radiométrica , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA