Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 8(43): 40613-40621, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929127

RESUMO

Leishmania poses a substantial threat to the human population all over the globe because of its visceral and cutaneous spread engendered by all 20 species. Unfortunately, the available drugs against leishmania are already hobbled with toxicity, prolonged treatment, and increasing instances of acquirement of resistance. Under these grave circumstances, the development of new drugs has become imperative to keep these harmful microbes at bay. To this end, a Groebke-Blackburn-Bienaymé multicomponent reaction-based library of different imidazo-fused heterocycles has been synthesized and screened against Leishmania amazonensis promastigotes and amastigotes. Among the library compounds, the imidazo-pyrimidine 24 has been found to be the most effective (inhibitory concentration of 50% (IC50) < 10 µM), with selective antileishmanial activity on amastigote forms, a stage of the parasite related to human disease. The compound 24 has exhibited an IC50 value of 6.63 µM, being ∼two times more active than miltefosine, a reference drug. Furthermore, this compound is >10 times more destructive to the intracellular parasites than host cells. The observed in vitro antileishmanial activity along with suitable in silico physicochemical and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of compound 24 reinforce the imidazo-pyrimidine scaffold as a new antileishmanial pharmacophore and encourage further murine experimental leishmaniasis studies.

2.
Bioorg Med Chem Lett ; 96: 129532, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866714

RESUMO

Indoleamine-2,3-dioxygenase 1 (IDO1) is an immunomodulatory enzyme known to catalyse the initial and rate limiting step of kynurenine pathway of l-tryptophan metabolism. IDO1 enzyme over expression plays a crucial role in progression of cancer, malaria, multiple sclerosis and other life-threatening diseases. Several efforts over the last two decades have been invested by the researchers for the discovery of different IDO1 inhibitors and the plasticity of the IDO1 enzyme ligand binding pocket provide ample opportunities to develop new heterocyclic scaffolds targeting this enzyme. In the present work, based on the X-ray crystal structure of human IDO1 coordinated with few ligands, we designed and synthesized new fused heterocyclic compounds and evaluated their potential human IDO1 inhibitory activity (compound 30 and 41 showed IC50 values of 23 and 13 µM, respectively). The identified HITs were observed to be non-toxic to HEK293 cells at 100 µM concentration. The observed activity of the synthesized compounds was correlated with the specific interactions of their structures at the enzyme pocket using docking studies. A detailed analysis of docking results of the synthesized analogues as well as selected known IDO1 inhibitors revealed that most of the inhibitors have some reasonable docking scores in at least two crystal structures and have similar orientation as that of co-crystal ligands.


Assuntos
Inibidores Enzimáticos , Indolamina-Pirrol 2,3,-Dioxigenase , Humanos , Relação Estrutura-Atividade , Inibidores Enzimáticos/química , Células HEK293 , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA