Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341275

RESUMO

AIMS: The study aims to explore antifungal properties of bacillibactin siderophore produced by the plant growth-promoting rhizobacterium (PGPR) Bacillus subtilis against fungal phytopathogens Alternaria porri and Fusarium equiseti isolated from Solanum lycopersicum and Solanum melongena plants. METHODS AND RESULTS: Alternaria porri and F. equiseti were isolated from infected plants of eggplant and tomato, respectively. A plate assay was employed to assess the effect of bacillibactin against the phytopathogens. The antifungal potential of the PGPR was evaluated by estimation of dry fungal biomass, visualization of cellular deformity using compound and scanning electron microscopy, antioxidative enzyme assay and analysis of membrane damage via using lipid peroxidation. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis was employed to investigate changes in intracellular iron content. The impact of bacillibactin on pathogenesis was evaluated by infecting detached leaves of S. lycopersicum and S. melongena plants with both the pathogens and treating the infected leaves with bacillibactin. Leaves were further investigated for ROS accumulation, extent of necrosis and cell death. Our findings revealed significant damage to the hyphal structure of A. porri and F. equiseti following treatment with bacillibactin. Biomass reduction, elevated antioxidative enzyme levels, and membrane damage further substantiated the inhibitory effects of the siderophore on fungal growth. ICP-AES analysis indicates an increase in intracellular iron content suggesting enhanced iron uptake facilitated by bacillibactin. Moreover, application of 1500 µg ml-1 bacillibactin on infected leaves demonstrated a substantial inhibition of ROS accumulation, necrosis, and cell death upon bacillibactin treatment. CONCLUSIONS: This study confirms the potent antagonistic activity of bacillibactin against both the phytopathogens A. porri and F. equiseti growth, supporting its potential as a promising biological control agent for fungal plant diseases. Bacillibactin-induced morphological, physiological, and biochemical alterations in the isolated fungi and pathogen-infected leaves highlight the prospects of bacillibactin as an effective and sustainable solution to mitigate economic losses associated with fungal infections in vegetable crops.


Assuntos
Alternaria , Solanum lycopersicum , Solanum , Antifúngicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Solanum/metabolismo , Sideróforos/farmacologia , Produtos Agrícolas/metabolismo , Ferro , Necrose , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Front Microbiol ; 12: 729032, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803944

RESUMO

Microorganisms produce various secondary metabolites for growth and survival. During iron stress, they produce secondary metabolites termed siderophores. In the current investigation, antifungal activity of catecholate siderophore produced by Escherichia coli has been assessed against Aspergillus nidulans. Exogenous application of the bacterial siderophore to fungal cultures resulted in decreased colony size, increased filament length, and changes in hyphal branching pattern. Growth inhibition was accompanied with increased intracellular iron content. Scanning electron microscopy revealed dose-dependent alteration in fungal morphology. Fluorescent staining by propidium iodide revealed cell death in concert with growth inhibition with increasing siderophore concentration. Antioxidative enzyme activity was also compromised with significant increase in catalase activity and decrease in ascorbate peroxidase activity. Siderophore-treated cultures showed increased accumulation of reactive oxygen species as observed by fluorescence microscopy and enhanced membrane damage in terms of malondialdehyde content. Antifungal property might thus be attributed to xenosiderophore-mediated iron uptake leading to cell death. STRING analysis showed interaction of MirB (involved in transport of hydroxamate siderophore) and MirA (involved in transport of catecholate siderophore), confirming the possibility of uptake of iron-xenosiderophore complex through fungal transporters. MirA structure was modeled and validated with 95% residues occurring in the allowed region. In silico analysis revealed MirA-Enterobactin-Fe3+ complex formation. Thus, the present study reveals a promising antifungal agent in the form of catecholate siderophore and supports involvement of MirA fungal receptors in xenosiderophore uptake.

3.
World J Microbiol Biotechnol ; 36(12): 178, 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33128090

RESUMO

Siderophores are metal chelating secondary metabolites secreted by almost all organisms. Beside iron starvation, the ability to produce siderophores depends upon several other factors. Chemical structure of siderophore is very complex with vast structural diversity, thus the principle challenge involves its detection, quantification, purification and characterisation. Metal chelation is its most fascinating attribute. This metal chelation property is now forming the basis of its application as molecular markers, siderotyping tool for taxonomic clarification, biosensors and bioremediation agents. This has led researchers to develop and continuously modify previous techniques in order to provide accurate and reproducible methods of studying siderophores. Knowledge obtained via computational approaches provides a new horizon in the field of siderophore biosynthetic gene clusters and their interaction with various proteins/peptides. This review illustrates various techniques, bioinformatics tools and databases employed in siderophores' studies, the principle of analytical methods and their recent applications.


Assuntos
Ferro/metabolismo , Sideróforos/genética , Sideróforos/metabolismo , Biodegradação Ambiental , Técnicas Biossensoriais , Biologia Computacional , Estrutura Molecular , Metabolismo Secundário , Sideróforos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA