Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Res Sq ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37886517

RESUMO

Oral mucosal colonization by C. albicans (Ca) is benign in healthy people but progresses to deeper infection known as oropharyngeal candidiasis (OPC) that may become disseminated when combined with immunosuppression. Cortisone-induced immunosuppression is a well-known risk factor for OPC, however the mechanism by which it permits infection is poorly understood. Neutrophils are the primary early sentinels preventing invasive fungal growth, and here we identify that in vivo neutrophil functional complexes known as swarms are crucial for preventing Ca invasion which are disrupted by cortisone. Neutrophil swarm function required leukotriene B4 receptor 1 (BLT1) expression, and swarms were further characterized by peripheral association of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) showing that OPC recruits PMN-MDSCs to this site of infection. Furthermore, PMN-MDSCs associated with Ca hyphae had no direct antifungal effect but showed prolonged survival times and increased autophagy. Thus in vivo neutrophil swarms are complex structures with spatially associated PMN-MDSCs that likely contribute immunoregulatory functions to resolve OPC. These swarm structures have an important function in preventing deep invasion by Ca within the oral mucosa and represent a mechanism for increased disease severity under immune deficient clinical settings.

2.
Sci Rep ; 13(1): 14981, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696862

RESUMO

The design and selection of ideal emitter discharge rates can be aided by accurate information regarding the wetted soil pattern under surface drip irrigation. The current field investigation was conducted in an apple orchard in SKUAST- Kashmir, Jammu and Kashmir, a Union Territory of India, during 2017-2019. The objective of the experiment was to examine the movement of moisture over time and assess the extent of wetting in both horizontal and vertical directions under point source drip irrigation with discharge rates of 2, 4, and 8 L h-1. At 30, 60, and 120 min since the beginning of irrigation, a soil pit was dug across the length of the wetted area on the surface in order to measure the wetting pattern. For measuring the soil moisture movement and wetted soil width and depth, three replicas of soil samples were collected according to the treatment and the average value were considered. As a result, 54 different experiments were conducted, resulting in the digging of pits [3 emitter discharge rates × 3 application times × 3 replications × 2 (after application and 24 after application)]. This study utilized the Drip-Irriwater model to evaluate and validate the accuracy of predictions of wetting fronts and soil moisture dynamics in both orientations. Results showed that the modeled values were very close to the actual field values, with a mean absolute error of 0.018, a mean bias error of 0.0005, a mean absolute percentage error of 7.3, a root mean square error of 0.023, a Pearson coefficient of 0.951, a coefficient of correlation of 0.918, and a Nash-Sutcliffe model efficiency coefficient of 0.887. The wetted width just after irrigation was measured at 14.65, 16.65, and 20.62 cm; 16.20, 20.25, and 23.90 cm; and 20.00, 24.50, and 28.81 cm in 2, 4, and 8 L h-1, at 30, 60, and 120 min, respectively, while the wetted depth was observed 13.10, 16.20, and 20.44 cm; 15.10, 21.50, and 26.00 cm; 19.40, 25.00, and 31.00 cm, respectively. As the flow rate from the emitter increased, the amount of moisture dissemination grew (both immediately and 24 h after irrigation). The soil moisture contents were observed 0.4300, 0.3808, 0.2298, 0.1604, and 0.1600 cm3 cm-3 just after irrigation in 2 L h-1 while 0.4300, 0.3841, 0.2385, 0.1607, and 0.1600 cm3 cm-3 were in 4 L h-1 and 0.4300, 0.3852, 0.2417, 0.1608, and 0.1600 cm3 cm-3 were in 8 L h-1 at 5, 10, 15, 20, and 25 cm soil depth in 30 min of application time. Similar distinct increments were found in 60, and 120 min of irrigation. The findings suggest that this simple model, which only requires soil, irrigation, and simulation parameters, is a valuable and practical tool for irrigation design. It provides information on soil wetting patterns and soil moisture distribution under a single emitter, which is important for effectively planning and designing a drip irrigation system. Investigating soil wetting patterns and moisture redistribution in the soil profile under point source drip irrigation helps promote efficient planning and design of a drip irrigation system.

3.
Heliyon ; 9(7): e18078, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37483755

RESUMO

Reliable information on the horizontal and vertical dimensions of the wetted soil beneath a point source is critical for designing accurate, cost-effective, and efficient surface and subsurface drip irrigation systems. Several factors, including soil properties, initial soil conditions, dripper flow rate, number of drippers, spacing between drippers, irrigation management, plant root characteristics, and evapotranspiration, influence the dimensions and shape of wetting patterns. The objective of this study was to briefly review previous studies, collect the analytical, numerical, and empirical models developed, and evaluate the effectiveness of the most common empirical method for predicting the dimensions of soil wetted around drippers using measured data from field surveys. With this review study, we aim to promote a better understanding of soil water dynamics under point-source drip irrigation systems, help improve soil water dynamics under point-source drip irrigation systems, and identify issues that should be better addressed in future modeling efforts. A drip irrigation system was configured with three different emitters with different capacities (2, 4, and 8 l h-1) in the point source to determine the soil wetting front under the point source. The five most selected empirical equations (Al-Ogaidi, Malek and Peters, Amin and Ekhmaj, Li and Schwartzman and Zur) were statistically analyzed to test the efficiency in sandy loam soil. According to the results of the field investigation, statistical comparisons of the empirical models with the field investigation data were performed using the mean absolute error (MAE), root mean square error (RMSE), Nash-Sutcliffe model efficiency (CE), and coefficients of determination (R2). The advanced simulation of the wetting front was used based on the best accuracy of the selected empirical model. In general, the Li model (MAE, RMSE, EF, and R2 were 0.698 cm, 0.894 cm, 0.970 cm2 cm-2, and 0.970, respectively, for the wetted soil width and 1.800 cm, 1.974 cm, 0.927 cm2 cm-2, and 0.986, for the vertical advance) proved to be the best after statistical analysis with field data.

4.
Math Biosci Eng ; 20(6): 11403-11428, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37322988

RESUMO

Trash mulches are remarkably effective in preventing soil erosion, reducing runoff-sediment transport-erosion, and increasing infiltration. The study was carried out to observe the sediment outflow from sugar cane leaf (trash) mulch treatments at selected land slopes under simulated rainfall conditions using a rainfall simulator of size 10 m × 1.2 m × 0.5 m with the locally available soil material collected from Pantnagar. In the present study, trash mulches with different quantities were selected to observe the effect of mulching on soil loss reduction. The number of mulches was taken as 6, 8 and 10 t/ha, three rainfall intensities viz. 11, 13 and 14.65 cm/h at 0, 2 and 4% land slopes were selected. The rainfall duration was fixed (10 minutes) for every mulch treatment. The total runoff volume varied with mulch rates for constant rainfall input and land slope. The average sediment concentration (SC) and sediment outflow rate (SOR) increased with the increasing land slope. However, SC and outflow decreased with the increasing mulch rate for a fixed land slope and rainfall intensity. The SOR for no mulch-treated land was higher than trash mulch-treated lands. Mathematical relationships were developed for relating SOR, SC, land slope, and rainfall intensity for a particular mulch treatment. It was observed that SOR and average SC values correlated with rainfall intensity and land slope for each mulch treatment. The developed models' correlation coefficients were more than 90%.


Assuntos
Sedimentos Geológicos , Erosão do Solo , Chuva , Solo , China
5.
Front Immunol ; 13: 912748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844627

RESUMO

Candida albicans Sap6, a secreted aspartyl protease (Sap), contributes to fungal virulence in oral candidiasis. Beside its protease activity, Sap6 contains RGD (RGDRGD) motif required for its binding to host integrins. Sap6 activates immune cells to induce proinflammatory cytokines, although its ability to interact and activate human oral epithelial cells (OECs) remain unknown. Addition of purified recombinant Sap6 (rSap6) to OECs resulted in production of IL-1ß and IL-8 cytokines similar to live hyphal C. albicans. OECs exposed to rSap6 showed phosphorylation of p38 and MKP1 and expression of c-Fos not found with C. albicans Δsap6, heat-inactivated Sap6, or rSap6ΔRGD . Heat inactivated rSap6 was able to induce IL-1ß but not IL-8 in OECs, while rSap6ΔRGD induced IL-8 but not IL-1ß suggesting parallel signaling pathways. C. albicans hyphae increased surface expression of Protease Activated Receptors PAR1, PAR2 and PAR3, while rSap6 increased PAR2 expression exclusively. Pretreatment of OECs with a PAR2 antagonist blocked rSap6-induced p38 MAPK signaling and IL-8 release, while rSap6ΔRGD had reduced MKP1 signaling and IL-1ß release independent from PAR2. OECs exposed to rSap6 exhibited loss of barrier function as measured by TEER and reduction in levels of E-cadherin and occludin junctional proteins that was prevented by pretreating OECs with a PAR2 antagonist. OECs treated with PAR2 antagonist also showed reduced rSap6-mediated invasion by C. albicans cells. Thus, Sap6 may initiate OEC responses mediated both through protease activation of PAR2 and by its RGD domain. This novel role of PAR2 suggests new drug targets to block C. albicans oral infection.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Candida albicans , Proteínas Fúngicas/metabolismo , Receptor PAR-2/metabolismo , Estomatite/microbiologia , Citocinas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Inflamação , Receptores Ativados por Proteinase/metabolismo
6.
Environ Sci Pollut Res Int ; 29(55): 83321-83346, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35763134

RESUMO

Dams significantly impact river hydrology by changing the timing, size, and frequency of low and high flows, resulting in a hydrologic regime that differs significantly from the natural flow regime before the impoundment. For precise planning and judicious use of available water resources for agricultural operations and aquatic habitats, it is critical to assess the dam water's temperature accurately. The building of dams, particularly several dams in rivers, can significantly impact downstream water. In this study, we predict the daily water temperature of the Yangtze River at Cuntan. Thus, this work reveals the potential of machine learning models, namely, M5 Pruned (M5P), Random Forest (RF), Random Subspace (RSS), and Reduced Error Pruning Tree (REPTree). The best and effective input variables combinations were determined based on the correlation coefficient. The outputs of the various machine learning algorithm models were compared with recorded daily water temperature data using goodness-of-fit criteria and graphical analysis to arrive at a final comparison. Based on a number of criteria, numerical comparison between the models revealed that M5P model performed superior (R2 = 0.9920, 0.9708; PCC = 0.9960, 0.9853; MAE = 0.2387, 0.4285; RMSE = 0.3449, 0.4285; RAE = 6.2573, 11.5439; RRSE = 8.0288, 13.8282) in pre-impact and post-impact spam, respectively. These findings suggest that a huge wave of dam construction in the previous century altered the hydrologic regimes of large and minor rivers. This study will be helpful for the ecologists and river experts in planning new reservoirs to maintain the flows and minimize the water temperature concerning spillway operation. Finally, our findings revealed that these algorithms could reliably estimate water temperature using a day lag time input in water level. They are cost-effective techniques for forecasting purposes.


Assuntos
Hidrologia , Rios , Temperatura , Aprendizado de Máquina , Água
7.
Environ Monit Assess ; 194(3): 228, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35220504

RESUMO

Lakes throughout the globe have been gravely altered or degraded at a pace much more significant than their restoration. In the heart of Srinagar, the summer capital of Jammu and Kashmir, Dal Lake, has witnessed extreme loss in water quality during the last four decades because of anthropogenic pressures. The lake is unique in that over 50,000 people inhabit the lake itself in houseboats, dongas, or islands within the lake. These people derive their livelihood from the lake in terms of tourism, agriculture, fishing, and vegetable farming. The countless ways people use the lake have led to an extreme load of pollution in the lake. Encroachment in and around the lake has led to the loss of volume of water in the lake and consequently increased the concentration of pollutants. Discharge of untreated sewage, agricultural runoff, and sediments from adjoining catchments have further degraded the lake water quality. The changes in water quality are clear from the physio-chemical properties of the lake waters. While transparency and dissolved oxygen in the lake have decreased drastically during the last 40 years, the concentration of harmful substances like phosphates, nitrates, and chlorides has increased. The hardness of water has also increased due to higher levels of carbonates and bicarbonates in the lake. This paper details the changes in the water quality of Dal Lake over the recent past. The paper analyses the strategies that can be implemented to manage the lake and restore its quality if appropriately implemented.


Assuntos
Lagos , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Lagos/química , Nitratos/análise , Poluentes Químicos da Água/análise , Qualidade da Água
8.
Chemosphere ; 288(Pt 3): 132606, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34678350

RESUMO

Nanotechnology is being an emerging science for wastewater treatment requires more research emphasis and depth knowledge. For wastewater treatment, different forms of nanomaterials are used based on the type of contaminants and treatment efficiency desired. With the development in the field of nanomaterials, novel and emerging nanomaterials are coming into existence. The nanomaterials used for wastewater treatment can be carbon, single-walled carbon nanotubes, multiple walled carbon nanotubes, covalent organic frameworks, metal and metal oxide- based nanoparticles. Graphene based nanoparticles, their oxides (GO) and reduced graphene oxide (rGO) find tremendous applicability to be used in wastewater treatment purposes. Due to the introduction of graphene oxide nanoparticles in the adsorbent materials, their adsorption capacities have get enhanced and such materials have also improved the mechanical stability of the adsorbent. Ferric oxide shows greater adsorption capacities for organic pollutants. Furthermore, magnetic nano-powder confers a low adsorption capacity for phenols. Pyrrolidone reduced graphene oxide (PVP-RGO) nanoparticles have been used as adsorbents for the elimination of inorganic target contaminant copper, with great adsorption (1698 mg/g). The present study comprehensively reviews nanotechnology as a wastewater treatment strategy besides enlightening its safety issues and efficiency. The novelty of this article is that it highlights the overview of recent applications of various types of nanomaterials and research works releated to it. Such an approach will be helpful to get insights into technological advances, applications and future challenges of nanotechnology implementation for wastewater treatment.


Assuntos
Grafite , Nanotubos de Carbono , Poluentes Químicos da Água , Purificação da Água , Adsorção , Nanotecnologia , Águas Residuárias
9.
Environ Sci Pollut Res Int ; 29(57): 85648-85657, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34599438

RESUMO

Coronavirus refers to a group of widespread viruses. The name refers to the specific morphology of these viruses because their spikes look like a crown under an electron microscope. The outbreak of coronavirus disease 2019 (COVID-19) that has been reported in Wuhan, China, in December 2019, was proclaimed an international public health emergency (PHEIC) on 30 January 2020, and on 11 March 2020, it was declared as a pandemic (World Health Organization 2020). The official name of the virus was declared by the WHO as "COVID-19 virus", formerly known as "2019-nCoV", or "Wuhan Coronavirus". The International Committee on Virus Taxonomy's Coronavirus Research Group has identified that this virus is a form of coronavirus that caused a severe outbreak of acute respiratory syndrome in 2002-2003 (SARS). As a result, the latest severe acute respiratory syndrome has been classified as a corona virus 2 (SARS-CoV-2) pathogen by this committee. This disease spread quickly across the country and the world within the first 3 months of the outbreak and became a global pandemic. To stop COVID-19 from spreading, the governing agencies used various chemicals to disinfect different commercial spaces, streets and highways. However, people used it aggressively because of panic conditions, anxiety and unconsciousness, which can have a detrimental impact on human health and the environment. Our water bodies, soil and air have been polluted by disinfectants, forming secondary products that can be poisonous and mutagenic. In the prevention and spread of COVID-19, disinfection is crucial, but disinfection should be carried out with sufficient precautions to minimize exposure to harmful by-products. In addition, to prevent inhalation, adequate personal protective equipment should be worn and chemical usage, concentrations, ventilation in the room and application techniques should be carefully considered. In the USA, 60% of respondents said they cleaned or disinfected their homes more often than they had in the previous months. In addition to the robust use of disinfection approaches to combat COVID-19, we will explore safe preventative solutions here.


Assuntos
COVID-19 , Desinfetantes , Humanos , SARS-CoV-2 , Pandemias/prevenção & controle , Surtos de Doenças
10.
Pathogens ; 10(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34959564

RESUMO

Candida albicans is maintained as a commensal by immune mechanisms at the oral epithelia. Oral antifungal peptide Histatin 5 (Hst 5) may function in innate immunity, but the specific role Hst 5 plays in C. albicans commensalism is unclear. Since Zn-binding potentiates the candidacidal activity of Hst 5, we hypothesized that Hst 5+Zn would elicit a unique fungal stress response to shape interactions between C. albicans and oral epithelial cells (OECs). We found that Hst 5+Zn but not Hst 5 alone resulted in the activation of cell wall integrity (CWI) signaling, and deletion mutants were then used to determine that CWI-mediated chitin synthesis was protective against killing. Using flow cytometry, we confirmed that Hst 5+Zn-treated cells had significantly elevated levels of cell-wall chitin, mannan and ß-1,3 glucan compared to Hst 5-treated cells. We then tested the activation of host signaling components involved in C. albicans cell-wall recognition. The immunoblot assay of C. albicans-exposed oral epithelial cells showed increased activation of EphA2 and NF-κB but not EGFR. Interestingly, C. albicans treated with Hst 5+Zn induced the global suppression of pro-inflammatory cytokine release from OECs, but an increase in negative regulator IL-10. Hst 5+Zn-treated cells were more adherent but ultimately less invasive to OECs than control cells, thus indicating lowered virulence. Therefore, Hst 5+Zn-treated C. albicans cells are discerned by epithelial monolayers, but are less virulent and promote anti-inflammatory signaling, suggesting that Hst 5+Zn in combination could play a role in regulating commensalism of oral C. albicans through cell wall reorganization.

11.
Environ Res ; 195: 110839, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33549623

RESUMO

The outbreak of COVID-19 pandemic has emerged as a major challenge from human health perspective. The alarming exponential increase in the transmission and fatality rates related to this disease has brought the world to a halt so as to cope up with its stern consequences. This has led to the imposition of lockdown across the globe to prevent the further spread of this disease. This lock down brought about drastic impacts at social and economic fronts. However, it also posed some positive impacts on environment as well particularly in the context of air quality due to reduction in concentrations of particulate matter (PM), NO2 and CO across the major cities of the globe as indicated by several research organizations. In China, Italy, France and Spain, there were about 20-30% reduction in NO2 emission while in USA 30% reduction in NO2 emission were observed. Compared to previous year, there was 11.4% improvement in the air quality in China. Drastic reductions in NO (-77.3%), NO2 (-54.3%) and CO (-64.8%) (negative sign indicating a decline) concentrations were observed in Brazil during partial lockdown compared to the five year monthly mean. In India there were about -51.84, -53.11, -17.97, -52.68, -30.35, 0.78 and -12.33% reduction in the concentration of PM10, PM2.5, SO2, NO2, CO, O3 and NH3 respectively. This article highlights the impact of lockdown on the environment and also discusses the pre and post lockdown air pollution scenario across major cities of the world. Several aspect of environment such as air, water, noise pollution and waste management during, pre and post lockdown scenario were studied and evaluated comprehensively. This research would therefore serve as a guide to environmentalist, administrators and frontline warriors for fighting our the way to beat this deadly disease and minimize its long term implications on health and environment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Brasil , China , Cidades , Mudança Climática , Controle de Doenças Transmissíveis , Monitoramento Ambiental , França , Humanos , Índia , Itália , Pandemias , Material Particulado/análise , SARS-CoV-2 , Espanha
12.
J Fungi (Basel) ; 6(3)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751915

RESUMO

Histatin 5 (Hst 5) is an antimicrobial peptide produced in human saliva with antifungal activity for opportunistic pathogen Candida albicans. Hst 5 binds to multiple cations including dimerization-inducing zinc (Zn2+), although the function of this capability is incompletely understood. Hst 5 is taken up by C. albicans and acts on intracellular targets under metal-free conditions; however, Zn2+ is abundant in saliva and may functionally affect Hst 5. We hypothesized that Zn2+ binding would induce membrane-disrupting pores through dimerization. Through the use of Hst 5 and two derivatives, P113 (AA 4-15 of Hst 5) and Hst 5ΔMB (AA 1-3 and 15-19 mutated to Glu), we determined that Zn2+ significantly increases killing activity of Hst 5 and P113 for both C. albicans and Candida glabrata. Cell association assays determined that Zn2+ did not impact initial surface binding by the peptides, but Zn2+ did decrease cell association due to active peptide uptake. ATP efflux assays with Zn2+ suggested rapid membrane permeabilization by Hst 5 and P113 and that Zn2+ affinity correlates to higher membrane disruption ability. High-performance liquid chromatography (HPLC) showed that the higher relative Zn2+ affinity of Hst 5 likely promotes dimerization. Together, these results suggest peptide assembly into fungicidal pore structures in the presence of Zn2+, representing a novel mechanism of action that has exciting potential to expand the list of Hst 5-susceptible pathogens.

13.
mSphere ; 5(4)2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32759336

RESUMO

Phagocytic cells are crucial components of the innate immune system preventing Candida albicans mucosal infections. Streptococcus gordonii and Pseudomonas aeruginosa often colonize mucosal sites, along with C. albicans, and yet interkingdom interactions that might alter the survival and escape of fungi from macrophages are not understood. Murine macrophages were coinfected with S. gordonii or P. aeruginosa, along with C. albicans to evaluate changes in fungal survival. S. gordonii increased C. albicans survival and filamentation within macrophage phagosomes, while P. aeruginosa reduced fungal survival and filamentation. Coinfection with S. gordonii resulted in greater escape of C. albicans from macrophages and increased size of fungal microcolonies formed on macrophage monolayers, while coinfection with P. aeruginosa reduced macrophage escape and produced smaller microcolonies. Microcolonies formed in the presence of P. aeruginosa cells outside macrophages also had significantly reduced size that was not found with P. aeruginosa phenazine deletion mutants. S. gordonii cells, as well as S. gordonii heat-fixed culture supernatants, increased C. albicans microcolony biomass but also resulted in microcolony detachment. A heat-resistant, trypsin-sensitive pheromone processed by S. gordonii Eep was needed for these effects. The majority of fungal microcolonies formed on human epithelial monolayers with S. gordonii supernatants developed as large floating structures with no detectable invasion of epithelium, along with reduced gene expression of C. albicansHYR1, EAP1, and HWP2 adhesins. However, a subset of C. albicans microcolonies was smaller and had greater epithelial invasiveness compared to microcolonies grown without S. gordonii Thus, bacteria can alter the killing and escape of C. albicans from macrophages and contribute to changes in C. albicans pathogenicity.IMPORTANCECandida albicans is the predominant fungus colonizing the oral cavity that can have both synergistic and antagonistic interactions with other bacteria. Interkingdom polymicrobial associations modify fungal pathogenicity and are believed to increase microbial resistance to innate immunity. However, it is not known how these interactions alter fungal survival during phagocytic killing. We demonstrated that secreted molecules of S. gordonii and P. aeruginosa alter C. albicans survival within the phagosome of macrophages and alter fungal pathogenic phenotypes, including filamentation and microcolony formation. Moreover, we provide evidence for a dual interaction between S. gordonii and C. albicans such that S. gordonii signaling peptides can promote C. albicans commensalism by decreasing microcolony attachment while increasing invasion in epithelial cells. Our results identify bacterial diffusible factors as an attractive target to modify virulence of C. albicans in polymicrobial infections.


Assuntos
Bactérias/metabolismo , Candida albicans/fisiologia , Hifas/crescimento & desenvolvimento , Macrófagos/microbiologia , Interações Microbianas , Fagossomos/microbiologia , Animais , Bactérias/genética , Aderência Bacteriana , Candida albicans/patogenicidade , Células Epiteliais/microbiologia , Camundongos , Boca/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Células RAW 264.7 , Streptococcus gordonii/genética , Streptococcus gordonii/fisiologia , Virulência
14.
mSphere ; 5(4)2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641426

RESUMO

Candida albicans is an opportunistic, dimorphic fungus that causes candidiasis in immunocompromised people. C. albicans forms specialized structures called microcolonies that are important for surface adhesion and virulence. Microcolonies form in response to specific environmental conditions and require glycolytic substrates for optimal growth. However, fungal signaling pathways involved in sensing and transmitting these environmental cues to induce microcolony formation have not been identified. Here, we show that the C. albicans Ras1-cAMP cascade is required for microcolony formation, while the Cek1-MAP kinase pathway is not required, and Hog1 represses microcolony formation. The membrane protein Sho1, known to regulate the Cek1 pathway in yeasts, was indispensable for C. albicans microcolony formation but regulated the Ras1-cAMP pathway instead, based upon diminished intracellular levels of cAMP and reduced expression of core microcolony genes, including HWP1, PGA10, and ECE1, in C. albicanssho1Δ cells. Based upon predicted physical interactions between Sho1 and the glycolytic enzymes Pfk1, Fba1, Pgk1, and Cdc19, we hypothesized that Sho1 regulates Ras1-cAMP by establishing cellular energy levels produced by glycolysis. Indeed, microcolony formation was restored in C. albicanssho1Δ cells by addition of exogenous intermediates of glycolysis, including downstream products of each predicted interacting enzyme (fructose 1,6 bisphosphate, glyceraldehyde phosphate, 3-phosphoglyceric acid, and pyruvate). Thus, C. albicans Sho1 is an upstream regulator of the Ras1-cAMP signaling pathway that connects glycolytic metabolism to the formation of pathogenic microcolonies.IMPORTANCEC. albicans microcolonies form extensive hyphal structures that enhance surface adherence and penetrate underlying tissues to promote fungal infections. This study examined the environmental conditions that promote microcolony formation and how these signals are relayed, in order to disrupt signaling and reduce pathogenesis. We found that a membrane-localized protein, Sho1, is an upstream regulator of glycolysis and required for Ras1-cAMP signaling. Sho1 controlled the Ras1-dependent expression of core microcolony genes involved in adhesion and virulence. This new regulatory function for Sho1 linking glycolysis to microcolony formation reveals a novel role for this fungal membrane protein.


Assuntos
Candida albicans/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Fúngicas/genética , Glicólise , Proteínas de Membrana/genética , Transdução de Sinais/genética , Candida albicans/metabolismo , Candida albicans/patogenicidade , Candidíase/microbiologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Virulência
15.
Artigo em Inglês | MEDLINE | ID: mdl-30718249

RESUMO

Candida albicans, the causative agent of mucosal infections, including oropharyngeal candidiasis (OPC), as well as bloodstream infections, is becoming increasingly resistant to existing treatment options. In the absence of novel drug candidates, drug repurposing aimed at using existing drugs to treat off-label diseases is a promising strategy. C. albicans requires environmental iron for survival and virulence, while host nutritional immunity deploys iron-binding proteins to sequester iron and reduce fungal growth. Here we evaluated the role of iron limitation using deferasirox (an FDA-approved iron chelator for the treatment of patients with iron overload) during murine OPC and assessed deferasirox-treated C. albicans for its interaction with human oral epithelial (OE) cells, neutrophils, and antimicrobial peptides. Therapeutic deferasirox treatment significantly reduced salivary iron levels, while a nonsignificant reduction in the fungal burden was observed. Preventive treatment that allowed for two additional days of drug administration in our murine model resulted in a significant reduction in the number of C. albicans CFU per gram of tongue tissue, a significant reduction in salivary iron levels, and significantly reduced neutrophil-mediated inflammation. C. albicans cells harvested from the tongues of animals undergoing preventive treatment had the differential expression of 106 genes, including those involved in iron metabolism, adhesion, and the response to host innate immunity. Moreover, deferasirox-treated C. albicans cells had a 2-fold reduction in survival in neutrophil phagosomes (with greater susceptibility to oxidative stress) and reduced adhesion to and invasion of OE cells in vitro Thus, deferasirox treatment has the potential to alleviate OPC by affecting C. albicans gene expression and reducing virulence.


Assuntos
Candida albicans/efeitos dos fármacos , Candidíase Bucal/tratamento farmacológico , Deferasirox/farmacologia , Células Epiteliais/microbiologia , Quelantes de Ferro/farmacologia , Mucosa Bucal/microbiologia , Animais , Antifúngicos/farmacologia , Candida albicans/patogenicidade , Candidíase Bucal/microbiologia , Candidíase Bucal/patologia , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Reposicionamento de Medicamentos , Feminino , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Bucal/citologia , Mucosa Bucal/patologia , Neutrófilos/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Saliva/química , Língua/microbiologia
16.
PLoS Pathog ; 14(9): e1007316, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30252918

RESUMO

Candida albicans is an opportunistic fungal pathogen that can infect oral mucosal surfaces while being under continuous flow from saliva. Under specific conditions, C. albicans will form microcolonies that more closely resemble the biofilms formed in vivo than standard in vitro biofilm models. However, very little is known about these microcolonies, particularly genomic differences between these specialized biofilm structures and the traditional in vitro biofilms. In this study, we used a novel flow system, in which C. albicans spontaneously forms microcolonies, to further characterize the architecture of fungal microcolonies and their genomics compared to non-microcolony conditions. Fungal microcolonies arose from radially branching filamentous hyphae that increasingly intertwined with one another to form extremely dense biofilms, and closely resembled the architecture of in vivo oropharyngeal candidiasis. We identified 20 core microcolony genes that were differentially regulated in flow-induced microcolonies using RNA-seq. These genes included HWP1, ECE1, IHD1, PLB1, HYR1, PGA10, and SAP5. A predictive algorithm was utilized to identify ten transcriptional regulators potentially involved in microcolony formation. Of these transcription factors, we found that Rob1, Ndt80, Sfl1 and Sfl2, played a key role in microcolony formation under both flow and static conditions and to epithelial surfaces. Expression of core microcolony genes were highly up-regulated in Δsfl1 cells and down-regulated in both Δsfl2 and Δrob1 strains. Microcolonies formed on oral epithelium using C. albicans Δsfl1, Δsfl2 and Δrob1 deletion strains all had altered adhesion, invasion and cytotoxicity. Furthermore, epithelial cells infected with deletion mutants had reduced (SFL2, NDT80, and ROB1) or enhanced (SFL2) immune responses, evidenced by phosphorylation of MKP1 and c-Fos activation, key signal transducers in the hyphal invasion response. This profile of microcolony transcriptional regulators more closely reflects Sfl1 and Sfl2 hyphal regulatory networks than static biofilm regulatory networks, suggesting that microcolonies are a specialized pathogenic form of biofilm.


Assuntos
Candida albicans/genética , Candida albicans/patogenicidade , Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Candidíase Bucal/etiologia , Candidíase Bucal/microbiologia , Linhagem Celular , Contagem de Colônia Microbiana , Proteínas Fúngicas/genética , Redes Reguladoras de Genes , Genoma Fúngico , Humanos , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Mutação , Infecções Oportunistas/etiologia , Infecções Oportunistas/microbiologia , Fatores de Transcrição/genética , Virulência/genética
17.
Sci Rep ; 7(1): 2908, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28588252

RESUMO

Candida albicans is an opportunistic fungal pathogen colonizing the oral cavity. C. albicans secreted aspartic protease Sap6 is important for virulence during oral candidiasis since it degrades host tissues to release nutrients and essential transition metals. We found that zinc specifically increased C. albicans autoaggregation induced by Sap6; and that Sap6 itself bound zinc ions. In silico analysis of Sap6 predicted four amyloidogenic regions that were synthesized as peptides (P1-P4). All peptides, as well as full length Sap6, demonstrated amyloid properties, and addition of zinc further increased amyloid formation. Disruption of amyloid regions by Congo red significantly reduced auotoaggregation. Deletion of C. albicans genes that control zinc acquisition in the ZAP1 regulon, including zinc transporters (Pra1 and Zrt1) and other zinc-regulated surface proteins, resulted in lower autoaggregation and reduction of surface binding of Sap6. Cells with high expression of PRA1 and ZRT1 also showed increased Sap6-mediated autoaggregation. C. albicans ∆sap6 deletion mutants failed to accumulate intracellular zinc comparable to ∆zap1, ∆zrt1, and ∆pra1 cells. Thus Sap6 is a multi-functional molecule containing amyloid regions that promotes autoaggregation and zinc uptake, and may serve as an additional system for the community acquisition of zinc.


Assuntos
Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Agregação Celular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Zinco/metabolismo , Proteínas Amiloidogênicas/química , Ácido Aspártico Endopeptidases/química , Proteínas de Transporte , Espaço Extracelular/metabolismo , Proteínas Fúngicas/química , Regulação da Expressão Gênica , Modelos Moleculares , Agregados Proteicos , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
18.
Mol Microbiol ; 100(3): 425-41, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26749104

RESUMO

Temperature is a potent inducer of fungal dimorphism. Multiple signalling pathways control the response to growth at high temperature, but the sensors that regulate these pathways are poorly defined. We show here that the signalling mucin Msb2 is a global regulator of temperature stress in the fungal pathogen Candida albicans. Msb2 was required for survival and hyphae formation at 42°C. The cytoplasmic signalling domain of Msb2 regulated temperature-dependent activation of the CEK mitogen activated proteins kinase (MAPK) pathway. The extracellular glycosylated domain of Msb2 (100-900 amino acid residues) had a new and unexpected role in regulating the protein kinase C (PKC) pathway. Msb2 also regulated temperature-dependent induction of genes encoding regulators and targets of the unfolded protein response (UPR), which is a protein quality control (QC) pathway in the endoplasmic reticulum that controls protein folding/degradation in response to high temperature and other stresses. The heat shock protein and cell wall component Ssa1 was also required for hyphae formation and survival at 42°C and regulated the CEK and PKC pathways.


Assuntos
Adaptação Fisiológica/genética , Candida albicans/metabolismo , Resposta ao Choque Térmico/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Resposta a Proteínas não Dobradas/genética , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Parede Celular/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura Alta , Hifas/genética , Hifas/crescimento & desenvolvimento , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Quinase C/metabolismo
19.
Pathogens ; 4(4): 752-63, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26529023

RESUMO

Salivary Histatin 5 (Hst 5) is an antimicrobial peptide that exhibits potent antifungal activity towards Candida albicans, the causative agent of oral candidiasis. However, it exhibits limited activity in vivo, largely due to inactivation by salivary components of both host and pathogen origin. Proteins secreted by C. albicans during infection such as secreted aspartyl proteases (Saps) and shed mucin Msb2 can reduce Hst 5 activity; and human salivary mucins, while suggested to protect Hst 5 from proteolytic degradation, can entrap peptides into mucin gels, thereby reducing bioavailability. We show here that Sap6 that is secreted during hyphal growth reduces Hst 5 activity, most likely a result of proteolytic degradation of Hst 5 since this effect is abrogated with heat inactivated Sap 6. We further show that just like C. albicans shedding Msb2, mammalian mucins, fetuin and porcine gut mucin (that is related to salivary mucins), also reduce Hst 5 activity. However, we identify mucin-like protein-induced changes in C. albicans cell morphology and aggregation patterns, suggesting that the effect of such proteins on Hst 5 cannot be interpreted independently of their effect on yeast cells.

20.
Water Sci Technol ; 72(7): 1168-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26398032

RESUMO

The geographical information system (GIS) has emerged as an efficient tool in delineation of drainage patterns of watershed planning and management. The morphometric parameters of basins can address linear, areal and relief aspects. The study deals with the integrated watershed management of Baliya micro-watersheds, located in the Udaipur district of Rajasthan, India. Morphometric analysis in hydrological investigation is an important aspect and it is inevitable in the development and management of drainage basins. The determination of linear, areal and relief parameters indicate fairly good significance. The low value of the bifurcation ratio of 4.19 revealed that the drainage pattern has not been distorted by structural disturbance. The high value of the elongation ratio (0.68) compared to the circulatory ratio (0.27) indicates an elongated shape of the watershed. The high value of drainage density (5.39 km/km(2)) and stream frequency (12.32) shows that the region has impermeable subsoil material under poor vegetative cover with a low relief factor. The morphometric parameters of relief ratio (0.041) and relative relief (0.99%) show that the watershed can be treated using GIS techniques to determine the morphometric presence of dendritic drainage pattern, with a view to selecting the soil and water conservation measures and water harvesting.


Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Movimentos da Água , Hidrologia , Índia , Chuva , Rios , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA