Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Med Res ; 16(1): 8-14, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38327389

RESUMO

Background: Reports suggest that patients with both acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and cold agglutinin disease (CAD) may experience poorer survival when treated with rituximab. We conducted a scoping review to evaluate severe outcomes, including intensive care unit (ICU) admission and mortality, in coronavirus disease 2019 (COVID-19) patients with CAD on various treatments, including rituximab. Methods: This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR). Four literature databases were searched on December 19, 2023, for studies reporting lab-confirmed SARS-CoV-2 and CAD, excluding rheumatological conditions. Results: Of the 741 screened articles, 19 were included. Studies, predominantly case reports (17/19) or case series (2/19), were mainly from the USA (8/19) and India (3/19), with others across Europe and Asia. Among 23 patients (61% female, median age 61 years), 21/23 had a new CAD diagnosis; only two had pre-existing CAD. Overall, 74% recovered, 21% died, and outcomes for one were unreported. Nine (39%) were ICU-admitted. Of rituximab-treated patients (n = 4), 25% were ICU-admitted, none died. Non-rituximab treatments (n = 19) saw 42% ICU admissions and 26% mortality. Conclusions: This review found no increased risk of severe outcomes in CAD and COVID-19 patients treated with rituximab.

2.
Lancet Reg Health West Pac ; 40: 100896, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38116498

RESUMO

Background: Carbapenem resistant Acinetobacter baumannii (CRAb) is categorised by the World Health Organization (WHO) as a pathogen of critical concern. However, little is known about CRAb transmission within the Oceania region. This study addresses this knowledge gap by using molecular epidemiology to characterise the phylogenetic relationships of CRAb isolated in hospitals in Fiji, Samoa, and other countries within the Oceania region including Australia and New Zealand, and India from South Asia. Methods: In this multicountry cohort study, we analysed clinical isolates of CRAb collected from the Colonial War Memorial Hospital (CWMH) in Fiji from January through December 2019 (n = 64) and Tupua Tamasese Mea'ole Hospital (TTMH) in Samoa from November 2017 through June 2021 (n = 32). All isolates were characterised using mass spectrometry, antimicrobial susceptibility testing, and whole-genome sequencing. For CWMH, data were collected on clinical and demographic characteristics of patients with CRAb, duration of hospital stay, mortality and assessing the appropriateness of meropenem use from the treated patients who had CRAb infections. To provide a broader geographical context, CRAb strains from Fiji and Samoa were compared with CRAb sequences from Australia collected in 2016-2018 (n = 22), New Zealand in 2018-2021 (n = 13), and India in 2019 (n = 58), a country which has close medical links with Fiji. Phylogenetic relationships of all these CRAb isolates were determined using differences in core genome SNPs. Findings: Of CRAb isolates, 49 (77%) of 64 from Fiji and all 32 (100%) from Samoa belonged to CRAb sequence type 2 (ST2). All ST2 isolates from both countries harboured blaOXA-23, blaOXA-66 and ampC-2 genes, mediating resistance to ß-lactam antimicrobials, including cephalosporins and carbapenems. The blaOXA-23 gene was associated with two copies of ISAba1 insertion element, forming the composite transposon Tn2006, on the chromosome. Two distinct clusters (group 1 and group 2) of CRAb ST2 were detected in Fiji. The first group shared common ancestral linkage to all CRAb ST2 collected from Fiji's historic outbreak in 2016/2017, Samoa, Australia and 54% of total New Zealand isolates; they formed a single cluster with a median (range) SNP difference of 13 (0-102). The second group shared common ancestral linkage to 3% of the total CRAb ST2 isolated from India. Fifty eight of the 64 patients with CRAb infections at the CWMH had their first positive CRAb sample collected 72 h or more following admission. Meropenem use was deemed inappropriate in 15 (48%) of the 31 patients that received treatment with meropenem in Fiji. Other strains of CRAb ST1, ST25, ST107, and ST1112 were also detected in Fiji. Interpretation: We identified unrecognised outbreaks of CRAb ST2 in Fiji and Samoa that linked to strains in other parts of Oceania and South Asia. The existence of Tn2006, containing the blaOXA-23 and ISAba1 insertion element, within CRAb ST2 from Fiji and Samoa indicates the potential for high mobility and dissemination. This raises concerns about unmitigated prolonged outbreaks of CRAb ST2 in the two major hospitals in Fiji and Samoa. Given the magnitude of this problem, there is a need to re-evaluate the current strategies used for infection prevention and control, antimicrobial stewardship, and public health measures locally and internationally. Moreover, a collaborative approach to AMR surveillance within the Oceania region with technical, management and budgetary support systems is required to prevent introduction and control transmission of these highly problematic strains within the island nation health systems. Funding: This project was funded by an Otago Global Health Institute seed grant and Maurice Wilkins Centre of Research Excellence (CoREs) grant (SC0000169653, RO0000002300).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA