Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 53(25): 10521-10535, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38842042

RESUMO

A rigid pentadentate chelating ligand (H2L) has been utilized to synthesize a series of octacoordinate mononuclear complexes, [Dy(L)(Ph3PO)(OOCR)] (where R = C6H5 (1), C(CH3)3 (2), CF3 (3)) and a dinuclear complex, [Dy2(L)2(Ph3PO)2{(OOC)2C6H4}] (4) based on the highly anisotropic Dy(III) ion. All the complexes were structurally characterized by single-crystal X-ray diffraction studies. The complexes were formed by the coordination action of the dianionic pentadentate ligand [L]2-, one phosphine oxide, and carboxylate ligands. DC and AC magnetic measurements were performed on 1-4. Complexes 1-4 show SMM behaviour, under zero DC field for 1 and 4, and under 500 Oe and 1000 Oe DC fields for 2 and 3 respectively, with thermally activated, Raman, and Raman and quantum tunnelling dominant relaxation mechanisms for 1 and 2, 3 and 4, respectively.

2.
Dalton Trans ; 52(30): 10594-10608, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37462111

RESUMO

The synthesis, structure and magnetic properties of homometallic hexanuclear lanthanide complexes [Ln6(HL)4(tfa)4(S)2]·2NO3·x H2O·yMeOH (1, Ln = Gd, S = MeOH, x = 0, y = 0; 2, Ln = Tb, S = H2O, x = 2, y = 2; 3, Ln = Dy, S = MeOH, x = 0, y = 2; 4, Ln = Er, S = MeOH, x = 0, y = 2). [(H4L) = 6-((bis(2-hydroxyethyl)amino)-N'-(2-hydroxybenzylidene)picolinohydrazide) (tfa = trifloroacetylacetone)] are reported. These hexanuclear assemblies are made up of two trinuclear triangular sub-units linked through the oxygen atoms of two phenoxide bridging groups in a corner sharing arrangement. Magnetic studies reveal that 1 displays a magnetocaloric effect with a maximum value of -ΔSm = 21.03 J kg-1 K-1 at T = 3 K and under an applied field change ΔB = 5 T. Complex 3 shows slow relaxation of magnetization even under zero applied field although a clear maximum in the ac susceptibility plots cannot be seen. However, under an optimal applied field of 0.2 T, clear maxima are observed in the out-of-phase (χ''M) component of the ac susceptibility in the temperature range 3.5 K (2 kHz) to 10.5 K (10 kHz). The temperature dependence of the relaxation times could be fitted to the sum of Orbach, Raman and QTM relaxation processes affording the following parameters: τo = 3.4(9) × 10-8 s, Ueff = 94(2) K, BRaman = 16.43(1) K-n s-1, n = 3.2(3) and τQTM = 0.0044(3) s. 4, under an applied magnetic field of 0.2 T, shows slow relaxation of magnetization through a thermally activated Orbach process with Ueff = 18.2(9) K and τo = 3.5(3) × 10-8 s.

3.
J Phys Chem Lett ; 13(46): 10759-10766, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36374525

RESUMO

Herein we report the fabrication of green emitting hybrid lead bromide perovskite single crystals (HLBPSCs), their anion exchange mediated tunable yellow luminescence and thereby their coupling ability with blue emitting inorganic complex leading to generation of a photostable white light emission, with properties close to bright day sunlight. The partial anion exchange reaction to green emitting HLBPSCs led to formation of yellow emitting anion exchanged HLBPSCs─which are termed as AE-HLBPSCs herein. Then, AE-HLBPSCs were chemically combined with blue emitting Zn-aspirin complex to produce white light with a photoluminescence quantum yield (PLQY) of 47.7%. The solid form of the white light emitting (WLE) composite (followed by coating with poly methyl methacrylate─PMMA) showed color coordinates of (0.34, 0.33), color rendering index of 76 and correlated color temperature of 5282 K. Furthermore, the PMMA coated inorganic complex coupled AE-HLBPSCs showed the preservation of their WLE nature and luminescence stability in their solid form.

4.
Inorg Chem ; 61(30): 11600-11621, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35849822

RESUMO

The synthesis, structure, and magnetic properties of three DyIII complexes of different nuclearity, [Dy2(H2L)2(NO3)] [NO3]·2H2O·CH3OH (1), [Dy4(HL)2(piv)4(OH)2] (2), and [Dy6(H2L)3(µ3-OH)(µ3-CO3)3(CH3OH)4(H2O)8] 5Cl·3H2O (3) [(H4L) = 6-((bis(2-hydroxyethyl)amino)-N'-(2-hydroxybenzylidene)picolinohydrazide)], are described. This variety of complexes with the same ligand could be obtained by playing with the metal-to-ligand molar ratio, the type of DyIII salt, the kind of base, and the presence/absence of coligand. 1 is a dinuclear complex, while 2 is a tetranuclear assembly with a butterfly-shaped topology. 3 is a homometallic hexanuclear complex that exhibits a propeller-shaped topology. Interestingly, in this complex 3, three atmospheric carbon dioxide molecules are trapped in the form of carbonate ions, which assist in holding the hexanuclear complex together. All of the complexes reveal a slow relaxation of magnetization even in zero applied field. Complex 1 is a zero-field SMM with an effective energy barrier (Ueff) of magnetization reversal equal to 87(1) K and a relaxation time of τ0 = 6.4(3) × 10-9 s. Under an applied magnetic field of 0.1 T, these parameters change to Ueff = 101(3) K, τ0 = 2.5(1) × 10-9 s. Complex 2 shows zero-field SMM behavior with Ueff = 31(2) K, τ0 = 4.2(1) × 10-7 s or τ01 = 2(1) × 10-7 s, Ueff1 = 37(8) K, τ02 = 5(6) × 10-5 s, and Ueff2 = 8(4) by considering two Orbach relaxation processes, while 3, also a zero-field SMM, shows a double relaxation of magnetization [Ueff1 = 62.4(3) K, τ01 = 4.6(3) × 10-8 s, and Ueff1 = 2(1) K, τ02 = 4.6(2) × 10-5 s]. The ab initio calculations indicated that in these complexes, the Kramer's ground doublet is characterized by an axial g-tensor with the prevalence of the mJ = ±15/2 component, as well as that due to the weak magnetic coupling between the metal centers, the magnetic relaxation, which is dominated by the single DyIII centers rather than by the exchange-coupled states, takes place via Raman/Orbach or TA-QTM. Moreover, theoretical calculations support a toroidal magnetic state for complex 2.

5.
Dalton Trans ; 50(40): 14257-14263, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34553710

RESUMO

Rational design of a catalyst using earth abundant transition metals that can facilitate the smooth O-O bond formation is crucial for developing efficient water oxidation catalysts. The coordination environment around the metal ion of the catalyst plays a pivotal role in this context. We have chosen dinuclear mixed-valence CoIIICoII complexes of the general formula of [CoIIICoII(LH2)2(X)(H2O)] (X = OAc or Cl) which bear a coordinated water molecule in the primary coordination sphere. We anticipated that the water molecule in the primary sphere can take part in the proton coupled electron transfer (PCET) mechanism which can accelerate the facile formation of the O-O bond under strong alkaline conditions (1 M NaOH). To understand the role of the coordinated water molecule we have generated an analogous complex, [CoIIICoII(LH2)2(o-vanillin)] (o-vanillin = 2-hydroxy-3-methoxybenzaldehyde), without coordinated water. Interestingly, we have found that the water coordinated complexes show better oxygen evolution reaction (OER) activity and stability.

6.
Inorg Chem ; 60(12): 8530-8545, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34085810

RESUMO

A series of homometallic dinuclear lanthanide complexes containing nonequivalent lanthanide metal centers [Ln2(LH2)(LH)(CH3OH)(N3)]·xMeOH·yH2O [1, Ln = DyIII, x = 0, y = 2; 2, Ln = TbIII, x = 1, y = 1] have been synthesized [LH4 = 6-((bis(2-hydroxyethyl)amino)-N'-(2-hydroxybenzylidene)picolinohydrazide] and characterized. The dinuclear assembly contains two different types of nine-coordinated lanthanide centers, because the nonequivalent binding of the azide co-ligand as well as the varying coordination of the deprotonated Schiff base ligand. Detailed magnetic studies have been performed on the complexes 1 and 2. Complex 1 and its diluted analogue (15%) are zero-field SMMs with effective energy barriers (Ueff) of magnetization reversal equal to 59(3) K and 66(3) K and relaxation times of τ0 = 10(4) × 10-6 s and 10(4) × 10-8 s, respectively. On the other hand, complex 2 shows a field-induced SMM behavior. Combined ab initio and density functional theory calculations were performed to explain the experimental findings and to unravel the nature of the magnetic anisotropy, exchange-coupled spectra, and magnetic exchange interactions between the two lanthanide centers.

7.
Dalton Trans ; 49(15): 4878-4886, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32219286

RESUMO

The reaction of Co(OAc)2·4H2O with a sterically hindered phosphate ester, LH2, afforded a tetranuclear complex, [CoII(L)(CH3CN)]4·5CH3CN (1) [LH2 = 2,6-(diphenylmethyl)-4-isopropyl-phenyl phosphate]. The molecular structure of 1 reveals that it is a tetranuclear assembly where the Co(ii) centers are present in the alternate corners of a cube. The four Co(ii) centers are held together by four di-anionic [L]2- ligands. The fourth coordination site on Co(ii) is taken by an acetonitrile ligand. Changing the Co(ii) precursor from Co(OAc)2·4H2O to Co(NO3)2·6H2O afforded a mononuclear complex [CoII(LH)2(CH3CN)2(MeOH)2](MeOH)2 (2). In 2, the Co(ii) centre is surrounded by two monoanionic [LH]- ligands and a pair of methanol and acetonitrile solvents in a six-coordinate arrangement. 1 has been found to be an efficient catalyst for electrochemical water oxidation under highly basic conditions while the mononuclear analogue, 2, does not respond to electrochemical water oxidation. The tetranuclear catalyst has excellent electrochemical stability and longevity, as established by chronoamperometry and >1000 cycle durability tests under highly alkaline conditions. Excellent current densities of 1 and 10 mA cm-2 were achieved with overpotentials of 354 and 452 mV respectively. The turnover frequency of this catalyst was calculated to be 5.23 s-1 with an excellent faradaic efficiency of 97%, indicating the selective oxygen evolution reaction (OER) occurring with the aid of this catalyst. A mechanistic insight into the higher activity of complex 1 towards the OER compared to that of complex 2 is also provided using density functional theory based calculations.

8.
Dalton Trans ; 49(15): 4785-4796, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32211713

RESUMO

A family of mononuclear penta-coordinated CoII complexes, [Co(L)Cl2]·CH3OH (1), [Co(L)Br2] (2) and [Co(L)(NCS)2] (3) (where L is 1-mesityl-N,N-bis(pyridin-2-ylmethyl)methanamine) were synthesized and characterized. In these complexes, the neutral non-planar ligand, L, binds to three coordination sites around the metal center while two others are bound by anionic halide/pseudo halide ligands. The coordination geometry of the complexes is dictated by the coordinated anionic ligands. Thus, the coordination geometry around the metal ion is distorted trigonal bipyramidal for complexes 1 and 3, while it is distorted square pyramidal for complex 2. Ab initio CASSCF/NEVPT2 calculations on the complexes reveal the presence of an easy plane magnetic anisotropy with the D and E/D values being, 13.3 and 0.14 cm-1 for 1; 36.1 and 0.24 cm-1 for 2 and ±8.6 and 0.32 cm-1 for 3. These values are in good agreement with the values that were extracted from the experimental DC data. AC magnetic measurements reveal the presence of a field-induced slow relaxation of magnetization. However, clear maxima in the out-of-phase susceptibility curves were not observed for 1 and 3. For complex 2, peak maxima were observed when the measurements were carried out under an applied field of 1400 Oe which allowed an analysis of the dynamics of the slow relaxation of magnetization. This revealed that the relaxation is mainly controlled by the Raman and direct processes with the values of the parameters found to be: B = 0.77(15) s-1 K-6.35, n = 6.35(12) and A = 3.41(4) × 10-10 s-1 Oe-4 K-1 and m = 4 (fixed). The ab initio calculation which showed the multifunctional nature of the electronic states of the complexes justifies the absence of zero-field SIM behaviour of the complexes. The magnitude and sign of the D and E values and their relationship with the covalency of the metal-ligand bonds was analysed by the CASSCF/NEVPT2 as well as AILFT calculations.

9.
Dalton Trans ; 49(8): 2527-2536, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32022054

RESUMO

Highly symmetric enneanuclear copper(ii) phosphates [Cu9(Pz)6(µ-OH)3(µ3-OH)(ArOPO3)4(DMF)3] (PzH = pyrazole, Ar = 2,6-(CHPh2)2-4-R-C6H2; R = Me, 2MeAr; Et, 2EtAr; iPr, 2iPrAr; and Ar = 2,6-iPr2C6H3, 2Dip) comprising nine copper(ii) centers and pyrazole, hydroxide and DMF as ancillary ligands were synthesized by a reaction involving the arylphosphate monoester, 1, copper(i)chloride, pyrazole, and triethylamine in a 4 : 9 : 6 : 14 ratio. All four complexes were characterized by single crystal structural analysis. The complexes contain two distinct structural motifs within the multinuclear copper scaffold: a hexanuclear unit and a trinuclear unit. In the latter, the three Cu(ii) centres are bridged by a µ3-OH. Each pair of Cu(ii) centers in the trinuclear unit are bridged by a pyrazole ligand. The hexanuclear unit is made up of three dinuclear Cu(ii) motifs where the two Cu(ii) centres are bridged by an -OH and a pyrazole ligand. The three dinuclear units are connected to each other by phosphate ligands. The latter also aid the fusion of the trinuclear and the hexanuclear motifs. Magnetic studies reveal a strong antiferromagnetic exchange between the Cu(ii) centres of the dinuclear units in the hexanuclear part and a strong spin frustration in the trinuclear part leading to a degenerate ground state.

10.
ACS Omega ; 4(1): 2118-2133, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459460

RESUMO

Syntheses and structures of anionic arylphosphate monoesters [ArOP(O)2(OH)]- (Ar = 2,6-CHPh2-4-R-C6H2; R = Me/Et/iPr/tBu) with different counter cations are reported. The counter cations were varied systematically: imidazolium cation, 2-methyl imidazolium cation, N-methyl imidazolium cation, N,N'-alkyl substituted imidazolium cation, 1,4-diazabicyclo[2.2.2]octan-1-ium cation, 4,4'-bipyridinium dication, and magnesium(II) dication. The objective was to examine if the supramolecular structure of anionic arylphosphate monoesters could be modulated by varying the cation. It was found that an eight-membered P2O4H2-hydrogen-bonded dimeric motif involving intermolecular H-bonding between the [P(O)(OH)] unit of the anionic phosphate monoester along with the counter cation is formed with 2-methyl imidazolium cation, N-methyl imidazolium cation, N,N'-alkyl substituted imidazolium cation, 1,4-diazabicyclo[2.2.2]octan-1-ium cation, and magnesium(II) dication; both discrete and polymeric H-bonded structures are observed. In the case of imidazolium cations and 1,4-diazabicyclo[2.2.2]octan-1-ium cation, the formation of one-dimensional polymers (single lane/double lane) was observed. On the other hand, two types of phosphate motifs, intermolecular H-bonded dimer and an open-form, were observed in the case of 4,4'-bipyridinium dication.

11.
Inorg Chem ; 58(16): 10725-10735, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31368683

RESUMO

Four new dinuclear complexes, [Co(µ-L)(µ-CCl3COO)Y(NO3)2]·2CHCl3·CH3CN·2H2O (1), [Co(µ-L)(µ-CH3COO)Y(NO3)2]·CH3CN (2), [Co(µ-L)(µ-PhCOO)Y(NO3)2]·3CH3CN·2H2O (3), and [Co(µ-L)(µ-tBuCOO)Y(NO3)2]·CHCl3·2H2O (4), having a CoIIYIII core, have been synthesized by employing a ferrocene based compartmental ligand which was synthesized by the reaction of diacetyl ferrocene with hydrazine hydrate followed by a condensation reaction with o-vanillin. A general synthetic protocol was employed to synthesize complexes 1-4, where the metallic core was kept the same with changing the bridging carboxylate groups. In all the complexes, the main structural motif is kept similar by only slightly varying the substitution on the bridging acetate groups. This variation has resulted in a small but subtle influence on the magnetic relaxation of all these four compounds. Ab initio CASSCF/NEVPT2 calculations were carried out to assess the effect of the different substitutions of the bridging ligands on the magnetic anisotropy parameters and on orbital arrangements. Ab initio calculations yield a very large positive D value, which is consistent with the geometry around the CoII ion and easy plane anisotropy (gxx, gyy > gzz), with the order of the calculated D in the range of 72.4 to 91.7 cm-1 being estimated in this set of complexes. To ascertain the sign of zero-field splitting in these complexes, EPR spectra were recorded, which support the sign of D values estimated from ab initio calculations.

12.
Dalton Trans ; 48(24): 8853-8860, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31139786

RESUMO

Herein, we report the synthesis and molecular structures of various magnesium(ii)-phosphate monoesters. By using a bulky aryl substituted phosphate monoester, ArOPO3H2 (Ar = 2,6-(CHPh2)2-4-tBu-C6H2), we have reproducibly assembled mono-, di-, tetra- (cage and ring), hexa-, and polynuclear magnesium(ii)-phosphate monoesters. Interestingly, the hexanuclear magnesium(ii)-phosphate monoester encapsulates an open-cage dodecanuclear water cluster.

13.
Chemistry ; 23(21): 5154-5170, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28205272

RESUMO

The synthesis, structure, and magnetic properties of four DyIII coordination compounds isolated as [Dy2 (LH2 )2 (µ2 -η1 :η1 -Piv)]Cl⋅2 MeOH⋅H2 O (1), [Dy4 (LH)2 (µ3 -OH)2 (Piv)4 (MeOH)2 ]⋅4 MeOH⋅2 H2 O (2), [Dy6 (LH2 )3 (tfa)3 (O3 PtBu)(Cl)3 ]Cl4 ⋅15.5 H2 O⋅4 MeOH⋅5 CHCl3 (3) and [Dy21 (L)7 (LH)7 (tfa)7 ]Cl7 ⋅15 H2 O⋅7 MeOH⋅12 CHCl3 (4) are reported (Piv=pivalate, tfa=1,1,1-trifluoroacetylacetone, O3 PtBu=tert-butylphosphonate). Among these, 3 displays an equilateral triangle topology with a side length of 9.541 Šand a rare pentagonal-bipyramidal Dy3+ environment, whereas complex 4 exhibits a single-stranded nanowheel structure with the highest nuclearity known for a homometallic lanthanide cluster structure. A tentative model of the dc magnetic susceptibility and the low-temperature magnetization of compounds 1 and 2 indicates that the former exhibits weak ferromagnetic intramolecular exchange interaction between the Dy3+ ions, whereas in the latter both intramolecular ferromagnetic and antiferromagnetic magnetic exchange interactions are present. Compounds 1, 3, and 4 exhibit frequency-dependent ac signals below 15 K at zero bias field, but without exhibiting any maximum above 2 K at frequencies up to 1400 Hz. The observed slow relaxation of the magnetization suggests that these compounds could exhibit single molecule magnet (SMM) behavior with either a thermal energy barrier for the reversal of the magnetization that is not high enough to block the magnetization above 2 K, or there exists quantum tunneling of the magnetization (QTM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA