Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 665: 430-442, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38485632

RESUMO

Hydrogen generation via semiconductor photocatalysts has gained significant attention as a sustainable fuel generation process. To demonstrate the performance of nanoscale core-shell heterostructure in photocatalytic hydrogen production, we have fabricated CdS nanorods coated with ZnS photocatalyst via wet-chemical reaction followed by deposition of ultrathin MoS2 nanosheets by photo reduction process. The effect of ZnS content and suitable amount of MoS2 loading over the visible-light induced photocatalytic hydrogen evolution was examined in Na2S and Na2SO3 aqueous solutions. Interestingly, it is apparent that a close connection (or heterojunction) between CdS and ZnS is believed to easily tunnel the charge carriers to the surplus surface states, making its electrons and holes energetically favourable to transfer from ZnS to MoS2 for photocatalytic reactions and subsequently, enhances the H2 evolution activity in CdS/ZnS type I core-shell heterostructures. The optimal MoS2 concentration is resolved to be 7 mol% and the subsequent visible-light induced H2 generation rate was 13589 µmol h-1g-1, which is 19 and 158 fold higher than pristine CdS and ZnS respectively. The probable photocatalytic mechanism of CdS/ZnS type I core-shell heterostructure with MoS2 cocatalyst is proposed. Our inexpensive and convenient preparation strategy may offer novel prospects in the engineering of desirable nanoheterostructures with better performance.

2.
Bioorg Chem ; 105: 104400, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33128966

RESUMO

The rise of drug-resistance has made the deserted clinical requirement to improve of new classes of antibiotics agents. The development of antibacterial agents with the novel method of activity stays a high need worldwide. The treatment of bacterial infections remains a test in light of developing irresistible sicknesses and the expanding number of multidrug-resistance microbial pathogens. Therefore, there is a need for powerful activities to think of new successful therapeutic agents, and it is dire to find novel synthetic analogs against bacterial targets. The improvements of new, less harmful, minimum side-effort, and extremely dynamic sulfonyl or sulfonamide-bearing analogs are hot research topics in medicinal chemistry. This present review summarizes the current innovations of sulfonyl or sulfonamide-based derivatives with potential antibacterial activities against various Gram-positive and Gram-negative bacterial strains and discussing its various aspects of structure-activity relationship (SAR).


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Sulfonamidas/farmacologia , Sulfonas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Compostos Heterocíclicos/química , Testes de Sensibilidade Microbiana , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonas/síntese química , Sulfonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA