Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 22(6): 1257-1266, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36757561

RESUMO

Phytochromes are red-light photoreceptors that regulate a wide range of physiological processes in plants, fungi and bacteria. Canonical bacteriophytochromes are photosensory histidine kinases that undergo light-dependent autophosphorylation, thereby regulating cellular responses to red light via two-component signaling pathways. However, the molecular mechanism of kinase activation remains elusive for bacteriophytochromes. In particular, the directionality of autophosphorylation is still an open question in these dimeric photoreceptor kinases. In this work, we perform histidine kinase assays on two tandem bacteriophytochromes RpBphP2 and RpBphP3 from the photosynthetic bacterium Rhodopseudomonas palustris. By examining the kinase activities of full-length bacteriophytochromes and two loss-of-function mutants under different light conditions, we demonstrate that RpBphP2 and RpBphP3 undergo light-dependent trans-phosphorylation between protomers in both homodimeric and heterodimeric forms. We have further determined the crystal structure of the histidine kinase domains of RpBphP2 at 3.19 Å resolution. Based on structural comparisons and homology modeling, we also present a model to account for the actions of trans-autophosphorylation in bacteriophytochromes.


Assuntos
Luz , Fitocromo , Fosforilação , Histidina Quinase/metabolismo , Fotossíntese , Transdução de Sinais , Fitocromo/química , Proteínas de Bactérias/química
2.
Sci Adv ; 8(21): eabm6278, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622911

RESUMO

Bacteriophytochromes (BphPs) are photoreceptors that regulate a wide range of biological mechanisms via red light-absorbing (Pr)-to-far-red light-absorbing (Pfr) reversible photoconversion. The structural dynamics underlying Pfr-to-Pr photoconversion in a liquid solution phase are not well understood. We used time-resolved x-ray solution scattering (TRXSS) to capture light-induced structural transitions in the bathy BphP photosensory module of Pseudomonas aeruginosa. Kinetic analysis of the TRXSS data identifies three distinct structural species, which are attributed to lumi-F, meta-F, and Pr, connected by time constants of 95 µs and 21 ms. Structural analysis based on molecular dynamics simulations shows that the light activation of PaBphP accompanies quaternary structural rearrangements from an "II"-framed close form of the Pfr state to an "O"-framed open form of the Pr state in terms of the helical backbones. This study provides mechanistic insights into how modular signaling proteins such as BphPs transmit structural signals over long distances and regulate their downstream biological responses.

3.
J Vis Exp ; (181)2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35343951

RESUMO

Biochemical reactions and biological processes can be best understood by demonstrating how proteins transition among their functional states. Since cryogenic temperatures are non-physiological and may prevent, deter, or even alter protein structural dynamics, a robust method for routine X-ray diffraction experiments at room temperature is highly desirable. The crystal-on-crystal device and its accompanying hardware and software used in this protocol are designed to enable in situ X-ray diffraction at room temperature for protein crystals of different sizes without any sample manipulation. Here we present the protocols for the key steps from device assembly, on-chip crystallization, optical scanning, crystal recognition to X-ray shot planning and automated data collection. Since this platform requires no crystal harvesting nor any other sample manipulation, hundreds to thousands of protein crystals grown on chip can be introduced into an X-ray beam in a programmable and high-throughput manner.


Assuntos
Proteínas , Cristalização/métodos , Cristalografia por Raios X , Temperatura , Difração de Raios X
4.
Structure ; 30(4): 564-574.e3, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35148828

RESUMO

Chromophore attachment of the light-harvesting apparatus represents one of the most important post-translational modifications in photosynthetic cyanobacteria. Extensive pigment diversity of cyanobacteria critically depends on bilin lyases that covalently attach chemically distinct chromophores to phycobiliproteins. However, how bilin lyases catalyze bilin ligation reactions and how some lyases acquire additional isomerase abilities remain elusive at the molecular level. Here, we report the crystal structure of a representative bilin lyase-isomerase MpeQ. This structure has revealed a "question-mark" protein architecture that unambiguously establishes the active site conserved among the E/F-type bilin lyases. Based on structural, mutational, and modeling data, we demonstrate that stereoselectivity of the active site plays a critical role in conferring the isomerase activity of MpeQ. We further advance a tyrosine-mediated reaction scheme unifying different types of bilin lyases. These results suggest that lyases and isomerase actions of bilin lyases arise from two coupled molecular events of distinct origin.


Assuntos
Cianobactérias , Liases , Pigmentos Biliares/metabolismo , Cianobactérias/metabolismo , Isomerases/genética , Isomerases/metabolismo , Liases/química , Liases/genética , Liases/metabolismo , Ficobiliproteínas/metabolismo
5.
mBio ; 12(2)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879593

RESUMO

The ability to sense and respond to environmental cues is essential for adaptation and survival in living organisms. In bacteria, this process is accomplished by multidomain sensor histidine kinases that undergo autophosphorylation in response to specific stimuli, thereby triggering downstream signaling cascades. However, the molecular mechanism of allosteric activation is not fully understood in these important sensor proteins. Here, we report the full-length crystal structure of a blue light photoreceptor LOV histidine kinase (LOV-HK) involved in light-dependent virulence modulation in the pathogenic bacterium Brucella abortus Joint analyses of dark and light structures determined in different signaling states have shown that LOV-HK transitions from a symmetric dark structure to a highly asymmetric light state. The initial local and subtle structural signal originated in the chromophore-binding LOV domain alters the dimer asymmetry via a coiled-coil rotary switch and helical bending in the helical spine. These amplified structural changes result in enhanced conformational flexibility and large-scale rearrangements that facilitate the phosphoryl transfer reaction in the HK domain.IMPORTANCE Bacteria employ two-component systems (TCSs) to sense and respond to changes in their surroundings. At the core of the TCS signaling pathway is the multidomain sensor histidine kinase, where the enzymatic activity of its output domain is allosterically controlled by the input signal perceived by the sensor domain. Here, we examine the structures and dynamics of a naturally occurring light-sensitive histidine kinase from the pathogen Brucella abortus in both its full-length and its truncated constructs. Direct comparisons between the structures captured in different signaling states have revealed concerted protein motions in an asymmetric dimer framework in response to light. Findings of this work provide mechanistic insights into modular sensory proteins that share a similar modular architecture.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/enzimologia , Brucella abortus/metabolismo , Cor , Histidina Quinase/química , Histidina Quinase/metabolismo , Luz , Proteínas de Bactérias/genética , Brucella abortus/genética , Brucella abortus/patogenicidade , Histidina Quinase/genética , Modelos Moleculares , Domínios Proteicos , Transdução de Sinais
6.
IUCrJ ; 7(Pt 6): 1009-1018, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209315

RESUMO

Direct observation of functional motions in protein structures is highly desirable for understanding how these nanomachineries of life operate at the molecular level. Because cryogenic temperatures are non-physiological and may prohibit or even alter protein structural dynamics, it is necessary to develop robust X-ray diffraction methods that enable routine data collection at room temperature. We recently reported a crystal-on-crystal device to facilitate in situ diffraction of protein crystals at room temperature devoid of any sample manipulation. Here an automated serial crystallography platform based on this crystal-on-crystal technology is presented. A hardware and software prototype has been implemented, and protocols have been established that allow users to image, recognize and rank hundreds to thousands of protein crystals grown on a chip in optical scanning mode prior to serial introduction of these crystals to an X-ray beam in a programmable and high-throughput manner. This platform has been tested extensively using fragile protein crystals. We demonstrate that with affordable sample consumption, this in situ serial crystallography technology could give rise to room-temperature protein structures of higher resolution and superior map quality for those protein crystals that encounter difficulties during freezing. This serial data collection platform is compatible with both monochromatic oscillation and Laue methods for X-ray diffraction and presents a widely applicable approach for static and dynamic crystallographic studies at room temperature.

7.
Lab Chip ; 18(15): 2246-2256, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29952383

RESUMO

Recent developments in serial crystallography at X-ray free electron lasers (XFELs) and synchrotrons have been driven by two scientific goals in structural biology - first, static structure determination from nano or microcrystals of membrane proteins and large complexes that are difficult for conventional cryocrystallography, and second, direct observations of transient structural species in biochemical reactions at near atomic resolution. Since room-temperature diffraction experiments naturally demand a large quantity of purified protein, sample economy is critically important for all steps of serial crystallography from crystallization, crystal delivery to data collection. Here we report the development and applications of "crystal-on-crystal" devices to facilitate large-scale in situ serial diffraction experiments on protein crystals of all sizes - large, small, or microscopic. We show that the monocrystalline quartz as a substrate material prevents vapor loss during crystallization and significantly reduces background X-ray scattering. These devices can be readily adopted at XFEL and synchrotron beamlines, which enable efficient delivery of hundreds to millions of crystals to the X-ray beam, with an overall protein consumption per dataset comparable to that of cryocrystallography.


Assuntos
Cristalografia por Raios X/instrumentação , Temperatura , Desenho de Equipamento , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA