Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Biotechnol ; 40(7): 1093-1102, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256816

RESUMO

Technologies that recruit and direct the activity of endogenous RNA-editing enzymes to specific cellular RNAs have therapeutic potential, but translating them from cell culture into animal models has been challenging. Here we describe short, chemically modified oligonucleotides called AIMers that direct efficient and specific A-to-I editing of endogenous transcripts by endogenous adenosine deaminases acting on RNA (ADAR) enzymes, including the ubiquitously and constitutively expressed ADAR1 p110 isoform. We show that fully chemically modified AIMers with chimeric backbones containing stereopure phosphorothioate and nitrogen-containing linkages based on phosphoryl guanidine enhanced potency and editing efficiency 100-fold compared with those with uniformly phosphorothioate-modified backbones in vitro. In vivo, AIMers targeted to hepatocytes with N-acetylgalactosamine achieve up to 50% editing with no bystander editing of the endogenous ACTB transcript in non-human primate liver, with editing persisting for at least one month. These results support further investigation of the therapeutic potential of stereopure AIMers.


Assuntos
Oligonucleotídeos , Edição de RNA , Animais , Primatas/genética , Primatas/metabolismo , RNA , Edição de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Nucleic Acids Res ; 50(10): 5401-5423, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35106589

RESUMO

Attaining sufficient tissue exposure at the site of action to achieve the desired pharmacodynamic effect on a target is an important determinant for any drug discovery program, and this can be particularly challenging for oligonucleotides in deep tissues of the CNS. Herein, we report the synthesis and impact of stereopure phosphoryl guanidine-containing backbone linkages (PN linkages) to oligonucleotides acting through an RNase H-mediated mechanism, using Malat1 and C9orf72 as benchmarks. We found that the incorporation of various types of PN linkages to a stereopure oligonucleotide backbone can increase potency of silencing in cultured neurons under free-uptake conditions 10-fold compared with similarly modified stereopure phosphorothioate (PS) and phosphodiester (PO)-based molecules. One of these backbone types, called PN-1, also yielded profound silencing benefits throughout the mouse brain and spinal cord at low doses, improving both the potency and durability of response, especially in difficult to reach brain tissues. Given these benefits in preclinical models, the incorporation of PN linkages into stereopure oligonucleotides with chimeric backbone modifications has the potential to render regions of the brain beyond the spinal cord more accessible to oligonucleotides and, consequently, may also expand the scope of neurological indications amenable to oligonucleotide therapeutics.


In this study, the authors explore the impact of nitrogen-containing (PN) backbones on oligonucleotides that promote RNase H-mediated degradation of a transcript in the central nervous system (CNS). Using Malat1, a ubiquitously expressed non-coding RNA that is predominately localized in the nucleus, and C9orf72, a challenging RNA target requiring a more nuanced targeting strategy, as benchmarks, they show that chimeric oligonucleotides containing stereopure PS and one of the more promising PN backbones (PN-1) have more potent and durable activity throughout the CNS compared with more traditional PS-modified molecules in mouse models. They demonstrate that potency and durability benefits in vivo derive at least in part from increased tissue exposure, especially in more difficult to reach regions of the brain. Ultimately, these benefits enabled the authors to demonstrate pharmacodynamic effects on Malat1 and C9orf72 RNAs in multiple brain regions with relatively low doses.


Assuntos
Oligonucleotídeos Antissenso , Animais , Células Cultivadas , Sistema Nervoso Central , Guanidina/química , Camundongos , Neurônios/efeitos dos fármacos , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Fosforotioatos , Ribonuclease H/metabolismo
3.
Nucleic Acids Res ; 50(10): 5443-5466, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35061895

RESUMO

Although recent regulatory approval of splice-switching oligonucleotides (SSOs) for the treatment of neuromuscular disease such as Duchenne muscular dystrophy has been an advance for the splice-switching field, current SSO chemistries have shown limited clinical benefit due to poor pharmacology. To overcome limitations of existing technologies, we engineered chimeric stereopure oligonucleotides with phosphorothioate (PS) and phosphoryl guanidine-containing (PN) backbones. We demonstrate that these chimeric stereopure oligonucleotides have markedly improved pharmacology and efficacy compared with PS-modified oligonucleotides, preventing premature death and improving median survival from 49 days to at least 280 days in a dystrophic mouse model with an aggressive phenotype. These data demonstrate that chemical optimization alone can profoundly impact oligonucleotide pharmacology and highlight the potential for continued innovation around the oligonucleotide backbone. More specifically, we conclude that chimeric stereopure oligonucleotides are a promising splice-switching modality with potential for the treatment of neuromuscular and other genetic diseases impacting difficult to reach tissues such as the skeletal muscle and heart.


Assuntos
Distrofia Muscular de Duchenne , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Fosforotioatos/química , Animais , Éxons , Camundongos , Músculo Esquelético , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Fosforotioatos/farmacologia , Splicing de RNA/efeitos dos fármacos
4.
J Biol Chem ; 287(47): 40021-30, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23019334

RESUMO

Sialyl-Lewis X (sLe(X)) is a tetrasaccharide that serves as a ligand for the set of cell adhesion proteins known as selectins. This interaction enables adhesion of leukocytes and cancer cells to endothelial cells within capillaries, resulting in their extravasation into tissues. The last step in sLe(X) biosynthesis is the α1,3-fucosyltrasferase (FUT)-catalyzed transfer of an L-fucose residue to carbohydrate acceptors. Impairing FUT activity compromises leukocyte homing to sites of inflammation and renders cancer cells less malignant. Inhibition of FUTs is, consequently, of great interest, but efforts to generate glycosyltransferase inhibitors, including FUT inhibitors, has proven challenging. Here we describe a metabolic engineering strategy to inhibit the biosynthesis of sLe(X) in cancer cells using peracetylated 5-thio-L-fucose (5T-Fuc). We show that 5T-Fuc is taken up by cancer cells and then converted into a sugar nucleotide analog, GDP-5T-Fuc, that blocks FUT activity and limits sLe(X) presentation on HepG2 cells with an EC(50) in the low micromolar range. GDP-5T-Fuc itself does not get transferred by either FUT3 or FUT7 at a measurable rate. We further demonstrate that treatment of cells with 5T-Fuc impaired their adhesive properties to immobilized adhesion molecules and human endothelial cells. 5T-Fuc, therefore, is a useful probe that can be used to modulate sLe(X) levels in cells to evaluate the consequences of inhibiting FUT-mediated sLe(X) formation. These data also reveal the utility of using sugar analogues that lead to formation of donor substrate analogues within cells as a general approach to blocking glycosyltransferases in cells.


Assuntos
Inibidores Enzimáticos/farmacologia , Fucose/análogos & derivados , Fucosiltransferases/antagonistas & inibidores , Oligossacarídeos/biossíntese , Selectinas/metabolismo , Animais , Células CHO , Adesão Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fucose/farmacologia , Fucosiltransferases/metabolismo , Glicosilação/efeitos dos fármacos , Células Hep G2 , Humanos , Engenharia Metabólica/métodos , Antígeno Sialil Lewis X
5.
Chembiochem ; 13(3): 392-401, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22262650

RESUMO

In a cell-based assay for novel inhibitors, we have discovered that two glycosides of 5-thiomannose, each containing an interglycosidic nitrogen atom, prevented the correct zymogen processing of the prohormone proopiomelanocortinin (POMC) and the transcription factor sterol-regulatory element-binding protein-2 (SREBP-2) in mouse pituitary cells and Chinese hamster ovary (CHO) cells, respectively. In the case of SREBP-2, these effects were correlated with the altered N-linked glycosylation of subtilisin/kexin-like isozyme-1 (SKI-1), the protease responsible for SREBP-2 processing under sterol-limiting conditions. Further examination of the effects of these compounds in CHO cells showed that they cause extensive protein hypoglycosylation in a manner similar to type I congenital disorders of glycosylation (CDGs) since the remaining N-glycans in treated cells were complete (normal) structures. The under-glycosylation of glycoproteins in 5-thiomannoside-treated cells is now shown to be caused by the compromised biosynthesis of the dolichol-linked oligosaccharide (DLO) N-glycosylation donor, although the nucleotide sugars required for the synthesis of DLOs were neither reduced under these conditions, nor were their effects reversed upon the addition of exogenous mannose. Analysis of DLO intermediates by fluorophore-assisted carbohydrate electrophoresis demonstrated that 5-thiomannose-containing glycosides block DLO biosynthesis most likely at a stage prior to the GlcNAc(2) Man(3) intermediate, on the cytosolic face of the endoplasmic reticulum.


Assuntos
Defeitos Congênitos da Glicosilação/metabolismo , Dolicóis/antagonistas & inibidores , Manose/farmacologia , Oligossacarídeos/antagonistas & inibidores , Animais , Células CHO , Células Cultivadas , Defeitos Congênitos da Glicosilação/prevenção & controle , Cricetinae , Modelos Animais de Doenças , Dolicóis/biossíntese , Dolicóis/química , Manose/análogos & derivados , Manose/química , Camundongos , Oligossacarídeos/biossíntese , Oligossacarídeos/química
6.
Bioorg Med Chem ; 19(13): 3929-34, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21669536

RESUMO

Inhibition of intestinal α-glucosidases and pancreatic α-amylases is an approach to controlling blood glucose and serum insulin levels in individuals with Type II diabetes. The two human intestinal glucosidases are maltase-glucoamylase and sucrase-isomaltase. Each incorporates two family 31 glycoside hydrolases responsible for the final step of starch hydrolysis. Here we compare the inhibition profiles of the individual N- and C-terminal catalytic subunits of both glucosidases by clinical glucosidase inhibitors, acarbose and miglitol, and newly discovered glucosidase inhibitors from an Ayurvedic remedy used for the treatment of Type II diabetes. We show that features of the compounds introduce selectivity towards the subunits. Together with structural data, the results enhance the understanding of the role of each catalytic subunit in starch digestion, helping to guide the development of new compounds with subunit specific antidiabetic activity. The results may also have relevance to other metabolic diseases such as obesity and cardiovascular disease.


Assuntos
Amido/metabolismo , Complexo Sacarase-Isomaltase/metabolismo , alfa-Glucosidases/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacologia , Acarbose/química , Acarbose/farmacologia , Domínio Catalítico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores de Glicosídeo Hidrolases , Cinética , Monossacarídeos/química , Compostos de Selênio/química , Compostos de Selênio/farmacologia , Complexo Sacarase-Isomaltase/antagonistas & inibidores , Álcoois Açúcares/química , Álcoois Açúcares/farmacologia , Sulfatos/química , Sulfatos/farmacologia
7.
Anal Chem ; 82(12): 5323-30, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20491445

RESUMO

A simple and reproducible capillary-zone electrophoresis (CZE) method was developed for the separation and quantitation of sulfonium-ion-containing compounds isolated from plants of the Salacia genus which are traditionally used in Ayurvedic medicine for the treatment of type-2 diabetes. The method sufficiently resolved four different compounds with confirmed glucosidase inhibitory activity, namely, salacinol, ponkoranol, kotalanol and de-O-sulfonated kotalanol. Separation could be achieved in less than 9 min, and calibration curves showed good linearity. Detection limits were determined to be in the low mug/mL range. This method was used to demonstrate that de-O-sulfonated kotalanol isolated from natural sources has identical ionic mobility to a synthetic standard. Furthermore, new extraction conditions were developed by which the zwitterionic compounds (salacinol, ponkoranol, and kotalanol) could be separated from de-O-sulfonated kotalanol in a single solid-phase extraction (SPE) procedure. The extraction gave reproducibly high recoveries and was used to process four commercial Salacia extracts for CZE analysis to reduce the complexity of resulting electropherograms and to facilitate the detection of the four inhibitors in question. De-O-sulfonated kotalanol was detected in two of four Salacia samples while ponkoranol was present in all four. A comparison of all samples tested demonstrated that they had remarkably similar patterns of peaks, suggesting that this CZE method may be useful in the chemical fingerprinting of Salacia-containing products.


Assuntos
Eletroforese Capilar/métodos , Inibidores Enzimáticos/isolamento & purificação , Glucosidases/antagonistas & inibidores , Salacia/química , Compostos de Sulfônio/isolamento & purificação , Calibragem , Eletroforese Capilar/economia , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA