Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Biochem Cell Biol ; 168: 106527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242199

RESUMO

High structural flexibility has been reported in the central region of BRCA1, which hinders the structural and functional evaluations of mutations identified in the domain. Additionally, the need to categorize variants of unknown significance (VUS) has increased due to the growth in the number of variants reported in clinical settings. Therefore, unraveling the disease-causing mechanism of VUS identified in different functional domains of BRCA1 is still challenging. The current study uses a multidisciplinary approach to assess the structural impact of BRCA1 Arg866Cys mutation discovered in the central domain of BRCA1. The structural alterations have been characterized using Circular-Dichroism spectroscopy, nano-DSF, and molecular-dynamics simulations. BRCA1 Arg866Cys mutant demonstrated more flexibility and lesser affinity to DNA than the wild-type protein. The BRCA1(759-1064) wild-type protein was shown to be a ßII-rich protein with an induced D-O transition in the presence of DNA and 2,2,2-Trifluoroethanol (TFE). The protein's alpha-helical composition did not significantly change in the presence of TFE, besides an increase in ß-turns and loops. Under Transmission Electron Microscopes (TEM), amyloid-like fibrils structure was detected for Arg866Cys mutant whereas the wild-type protein showed amorphous aggregates. An increased ThT fluorescence indicated ß-rich composition and aggregation-prone behaviour for BRCA1 wild-type protein, while the fluorescence intensity was significantly quenched in the Arg866Cys mutant. Furthermore, increased conformational flexibility in the Arg866Cys variant was observed by principal component analysis. This work aims to comprehend the inherently disordered region of BRCA1 as well as the impact of missense mutations on folding patterns and binding to DNA for functional aspects.


Assuntos
Proteína BRCA1 , Mutação de Sentido Incorreto , Proteína BRCA1/genética , Proteína BRCA1/química , Proteína BRCA1/metabolismo , DNA , Simulação de Dinâmica Molecular , Mutação , Humanos , Feminino
2.
Proteins ; 92(4): 540-553, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38037760

RESUMO

Preliminary studies have shown BRCA1 (170-1600) residues to be intrinsically disordered with unknown structural details. However, thousands of clinically reported variants have been identified in this central region of BRCA1. Therefore, we aimed to characterize h-BRCA1(260-553) to assess the structural basis for pathogenicity of two rare missense variants Ser282Leu, Gln356Arg identified from the Indian and Russian populations respectively. Small-angle X-ray scattering analysis revealed WT scores Rg -32 Å, Dmax -93 Å, and Rflex-51% which are partially disordered, whereas Ser282Leu variant displayed a higher degree of disorderedness and Gln356Arg was observed to be aggregated. WT protein also possesses an inherent propensity to undergo a disorder-to-order transition in the presence of cruciform DNA and 2,2,2-Trifluoroethanol (TFE). An increased alpha-helical pattern was observed with increasing concentration of TFE for the Gln356Arg mutant whereas Ser282Leu mutant showed significant differences only at the highest TFE concentration. Furthermore, higher thermal shift was observed for WT-DNA complex compared to the Gln356Arg and Ser282Leu protein-DNA complex. Moreover, mature amyloid-like fibrils were observed with 30 µM thioflavin T (ThT) at 37°C for Ser282Leu and Gln356Arg proteins while the WT protein exists in a protofibril state as observed by TEM. Gln356Arg formed higher-order aggregates with amyloidogenesis over time as monitored by ThT fluorescence. In addition, computational analyses confirmed larger conformational fluctuations for Ser282Leu and Gln356Arg mutants than for the WT. The global structural alterations caused by these variants provide a mechanistic approach for further classification of the variants of uncertain clinical significance in BRCA1 into amyloidogenic variants which may have a significant role in disease pathogenesis.


Assuntos
Amiloide , Mutação de Sentido Incorreto , DNA
3.
RSC Adv ; 12(45): 29469-29481, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36320765

RESUMO

Inherited glaucoma is a recent addition to the inventory of diseases arising due to protein misfolding. Mutations in the olfactomedin (OLF) domain of myocilin are the most common genetic cause behind this disease. Disease associated variants of m-OLF are predisposed to misfold and aggregate in the trabecular meshwork (TM) tissue of the eye. In recent years, the nature of these aggregates was revealed to exhibit the hallmarks of amyloids. Amyloid aggregates are highly stable structures that are formed, often with toxic consequences in a number of debilitating diseases. In spite of its clinical relevance the amyloidogenic nature of m-OLF has not been studied adequately. Here we have studied the amyloid fibrillation of m-OLF and report ECG as an inhibitor against it. Using biophysical and biochemical assays, coupled with advanced microscopic evaluations we show that ECG binds and stabilizes native m-OLF and thus prevents its aggregation into amyloid fibrils. Furthermore, we have used REMD simulations to delineate the stabilizing effects of ECG on the structure of m-OLF. Collectively, we report ECG as a molecular scaffold for designing and testing of novel inhibitors against m-OLF amyloid fibrillation.

4.
J Biomol Struct Dyn ; 40(1): 101-116, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32815796

RESUMO

Coronavirus pandemic has caused a vast number of deaths worldwide. Thus creating an urgent need to develop effective counteragents against novel coronavirus disease (COVID-19). Many antiviral drugs have been repurposed for treatment but implicated minimal recovery, which further advanced the need for clearer insights and innovation to derive effective therapeutics. Strategically, Noscapine, an approved antitussive drug with positive effects on lung linings may show favorable outcomes synergistically with antiviral drugs in trials. Hence, we have theoretically examined the combinatorial drug therapy by culminating the existing experimental results with in silico analyses. We employed the antitussive noscapine in conjugation with antiviral drugs (Chloroquine, Umifenovir, Hydroxychloroquine, Favlplravir and Galidesivir). We found that Noscapine-Hydroxychloroquine (Nos-Hcq) conjugate has strong binding affinity for the main protease (Mpro) of SARS-CoV-2, which performs key biological function in virus infection and progression. Nos-Hcq was analyzed through molecular dynamics simulation. The MD simulation for 100 ns affirmed the stable binding of conjugation unprecedentedly through RMSD and radius of gyration plots along with critical reaction coordinate binding free energy profile. Also, dynamical residue cross-correlation map with principal component analysis depicted the stable binding of Nos-Hcq conjugate to Mpro domains with optimal secondary structure statistics of complex dynamics. Also, we reveal the drugs with stable binding to major domains of Mpro can significantly improve the work profile of reaction coordinates, drug accession and inhibitory regulation of Mpro. The designed combinatorial therapy paves way for further prioritized in vitro and in vivo investigations for drug with robust binding against Mpro of SARS-CoV-2.


Assuntos
Antitussígenos , COVID-19 , Noscapina , Antivirais/uso terapêutico , Quimioinformática , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases , SARS-CoV-2
5.
RSC Adv ; 13(1): 720, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36605666

RESUMO

[This corrects the article DOI: 10.1039/D2RA05061G.].

6.
J Biomol Struct Dyn ; 40(19): 9096-9113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34038700

RESUMO

SARS-CoV-2, the causative agent behind the ongoing pandemic exhibits an enhanced potential for infection when compared to its related family members- the SARS-CoV and MERS-CoV; which have caused similar disease outbreaks in the past. The severity of the global health burden, increasing mortality rate and the emergent economic crisis urgently demands the development of next generation vaccines. Amongst such emergent next generation vaccines are the multi-epitope subunit vaccines, which hold promise in combating deadly pathogens. In this study we have exploited immunoinformatics applications to delineate a vaccine candidate possessing multiple B and T cells epitopes by utilizing the SARS-CoV-2 non structural and structural proteins. The antigenicity potential, safety, structural stability and the production feasibility of the designed construct was evaluated computationally. Furthermore, due to the known role of human TLR-3 immune receptor in viral sensing, which facilitates host cells activation for an immune response, the vaccine construct was examined for its binding efficiency using molecular docking and molecular dynamics simulation studies, which resulted in strong and stable interactions. Finally, the immune simulation studies suggested an effective immune response on vaccine administration. Overall, the immunoinformatics analysis advocates that the proposed vaccine candidate is safe and immunogenic and therefore can be pushed as a lead for in vitro and in vivo investigations.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2/metabolismo , Vacinas contra COVID-19 , Simulação de Acoplamento Molecular , COVID-19/prevenção & controle , Epitopos de Linfócito B , Vacinas Virais/química , Imunogenicidade da Vacina , Epitopos de Linfócito T , Vacinas de Subunidades Antigênicas
7.
J Biomol Struct Dyn ; 40(11): 4987-4999, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33357073

RESUMO

The global health emergency caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to alarming numbers of fatalities across the world. So far the researchers worldwide have not been able to discover a breakthrough in the form of a potent drug or an effective vaccine. Therefore, it is imperative to discover drugs to curb the ongoing menace. In silico approaches using FDA approved drugs can expedite the drug discovery process by providing leads that can be pursued. In this report, two drug targets, namely the spike protein and main protease, belonging to structural and non-structural class of proteins respectively, were utilized to carry out drug repurposing based screening. The exposed nature of the spike protein on the viral surface along with its instrumental role in host infection and the involvement of main protease in processing of polyproteins along with no human homologue make these proteins attractive drug targets. Interestingly, the screening identified a common high efficiency binding molecule named rutin. Further, molecular dynamics simulations in explicit solvent affirmed the stable and sturdy binding of rutin with these proteins. The decreased Rg value (4 nm for spike-rutin and 2.23 nm for main protease-rutin) and stagnant SASA analysis (485 nm/S2/N in spike-rutin and 152 nm/S2/N in main protease-rutin) for protein surface and its orientation in the exposed and buried regions suggests a strong binding interaction of the drug. Further, cluster analysis and secondary structure analysis of complex trajectories validated the conformational changes due to binding of rutin.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Rutina , SARS-CoV-2 , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Rutina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Tratamento Farmacológico da COVID-19
8.
Bioorg Chem ; 113: 105031, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34089943

RESUMO

NorA efflux pump pertaining to the major facilitator superfamily (MFS) is known to play a key role in antibiotic and biocide resistance in Staphylococcus aureus (S. aureus). It accounts for the extrusion of antibiotics like fluoroquinolones (e.g. ciprofloxacin). Several compounds including synthetic and natural products have been identified as potential NorA efflux pump inhibitors (EPIs) and found to restore the antibacterial activity of antibiotics. However, none of the reported EPIs have reached to clinical approval probably due to their high toxicity profiles. Considering the NorA efflux pump inhibitory potential of capsaicin, a series of capsaicin-based 1,3,4 oxadiazole conjugates were prepared and evaluated for ciprofloxacin activity potentiating effect. Among the new capsaicinoids tested, 17i displayed a minimum effective concentration (MEC) of 12.5 µg/mL against NorA overexpressing S. aureus strain (SA1199B), whereas capsaicin showed MEC of 50 µg/mL. The kill kinetics curve for the combination showed that ciprofloxacin at a sub-inhibitory concentration (0.25 × MIC) was equipotent in effect, to its MIC. 17i has significantly decreased the ethidium bromide efflux confirming NorA inhibition as the mode of action. Mutation prevention concentration of the ciprofloxacin was reduced in combination with 17i.In silico studies revealed the binding efficiency and binding affinity of 17i with NorA. This compound may serve as a template for the further drug discovery.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Capsaicina/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Oxidiazóis/química , Staphylococcus aureus/metabolismo , Antibacterianos/síntese química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Cinética , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
9.
Sci Rep ; 11(1): 7653, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828130

RESUMO

Development of effective counteragents against the novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, requires clear insights and information for understanding the immune responses associated with it. This global pandemic has pushed the healthcare system and restricted the movement of people and succumbing of the available therapeutics utterly warrants the development of a potential vaccine to contest the deadly situation. In the present study, highly efficacious, immunodominant cytotoxic T-lymphocyte (CTL) epitopes were predicted by advanced immunoinformatics assays using the spike glycoprotein of SARS-CoV2, generating a robust and specific immune response with convincing immunological parameters (Antigenicity, TAP affinity, MHC binder) engendering an efficient viral vaccine. The molecular docking studies show strong binding of the CTL construct with MHC-1 and host membrane specific TLR2 receptors. The molecular dynamics simulation in an explicit system confirmed the stable and robust binding of CTL epitope with TLR2. Steep magnitude RMSD variation and compelling residual fluctuations existed in terminal residues and various loops of the ß linker segments of TLR2-epitope (residues 105-156 and 239-254) to about 0.4 nm. The reduced Rg value (3.3 nm) and stagnant SASA analysis (275 nm/S2/N after 8 ns and 5 ns) for protein surface and its orientation in the exposed and buried regions suggests more compactness due to the strong binding interaction of the epitope. The CTL vaccine candidate establishes a high capability to elicit the critical immune regulators, like T-cells and memory cells as proven by the in silico immunization assays and can be further corroborated through in vitro and in vivo assays.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Biologia Computacional , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , COVID-19/terapia , Biologia Computacional/métodos , Simulação por Computador , Epitopos de Linfócito T/imunologia , Humanos , Imunogenicidade da Vacina , Modelos Moleculares , Glicoproteína da Espícula de Coronavírus/imunologia , Receptor 2 Toll-Like/imunologia
10.
Mol Cell Neurosci ; 112: 103612, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33722677

RESUMO

The multifactorial neurological condition called Alzheimer's disease (AD) primarily affects elderly individuals. Despite the calamitous consequences of AD, curative strategies for a regimen to apply remain inadequate as several factors contribute to AD etiology. Drug repurposing is an advance strategy prior to drug discovery as various effective drugs perform through alteration of multiple targets, and the present "poly-pharmacology" can be a curative approach to complex disorders. AD's multifactorial behavior actively encourages the hypothesis for a drug design approach focused on drug repurposing. In this study, we discovered that an antifungal drug, Caspofungin (CAS) is a potent Aß aggregation inhibitor that displays significantly reduced toxicity associated with AD. Drug reprofiling and REMD simulations demonstrated that CAS interacts with the ß-sheet section, known as Aß amyloid fibrils hotspot. CAS leads to destabilization of ß-sheet and, conclusively, in its devaluation. Later, in vitro experiments were acquired in which the fibrillar volume was reduced for CAS-treated Aß peptide. For the first time ever, this study has determined an antifungal agent as the Aß amyloid aggregation's potent inhibitor. Several efficient sequence-reliant potent inhibitors can be developed in future against the amyloid aggregation for different amyloid peptide by the processing and conformational optimization of CAS.


Assuntos
Peptídeos beta-Amiloides/efeitos dos fármacos , Antifúngicos/farmacologia , Caspofungina/farmacologia , Agregação Patológica de Proteínas/prevenção & controle , Doença de Alzheimer/tratamento farmacológico , Sequência de Aminoácidos , Animais , Antifúngicos/uso terapêutico , Caspofungina/uso terapêutico , Reposicionamento de Medicamentos , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Agregação Patológica de Proteínas/tratamento farmacológico , Conformação Proteica , Estrutura Secundária de Proteína/efeitos dos fármacos
11.
RSC Adv ; 11(42): 25901-25911, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35479435

RESUMO

Prion diseases involve misfolded and highly infectious aggregates of prion protein (PrPSc) which forms amyloid plaques leading to fatal neurodegeneration. The absence of clinically proven therapeutics makes the discovery of effective remedial interventions a prime concern. Herein, we report novel prion intervention by the polyphenolic phytoalexin, polydatin which binds with moderate affinity to the recombinant protease resistant core of human prion protein, encompassing the sequence 90-231 (rPrPres) and inhibits its conversion into the highly neurotoxic forms. An extensive evaluation using biophysical techniques revealed that polydatin incubated rPrPres samples generate off-pathway oligomers having reduced cross-ß sheet signature, and relatively smaller in size than the native rPrPres oligomers. The detailed structural analysis using molecular dynamics simulations elucidated the induction of antagonistic mobilities in the ß2-α2 loop, α3 helix and the N-terminal amyloidogenic region of prions. This study puts forward novel prion fibrillogenesis inhibitory potential of polydatin, specifically by stabilizing the N-terminal amyloidogenic region. Collectively our results affirm the importance of polydatin in crippling the prion pathogenesis and may serve as a structural scaffold for designing novel therapeutic agents targeting amyloidogenic transition in prions.

12.
Int J Biol Macromol ; 164: 2569-2582, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800950

RESUMO

Several pathological disorders have known linkages with the misfolding and abnormal oligomerization of peptides and proteins and their accumulation into numerous aggregates. One such peptide is human islet amyloid polypeptide (hIAPP) responsible for amyloid aggregation in type 2 diabetes. This aggregation can be altered by osmolytes, which are natural agents that can alter the environment surrounding of hIAPP. Here, we implemented several replica-exchange molecular dynamics (REMD) simulations to examine the effects of the denaturing osmolyte urea and the protective osmolyte trimethylamine N-oxide (TMAO) on amyloid aggregation and on the conformational ensemble of the hIAPP peptide. We analyzed specific modulations in hIAPP peptide and observed a state shift in the conformational population of hIAPP. Our results confirmed that urea restricted the peptide aggregation and led to the formation of unfolded conformations, whereas TMAO promoted folding and a compact state of the hIAPP peptide.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Metilaminas/química , Agregados Proteicos , Dobramento de Proteína , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Estrutura Secundária de Proteína
13.
RSC Adv ; 10(21): 12166-12182, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35497581

RESUMO

Large numbers of neurological and metabolic disorders occurring in humans are induced by the aberrant growth of aggregated or misfolded proteins. Alzheimer's disease (AD) and type 2 diabetes (T2D) are two of the most prevalent disorders that lead to toxic protofibrils of amyloid beta (Aß) and human islet amyloid polypeptide (hIAPP) in the form of intrinsically disordered proteins (IDPs). IDPs are important functional proteins or peptides that have no common structures and are found in various organisms; they play an imperative role in multiple biological mechanisms, changing their folding and unfolding patterns depending on the environment. Osmolytes are low molecular weight naturally occurring small molecules present in almost all organisms that act as denaturants or counter-denaturants, helping to alter the environmental surroundings under stressful or pathological conditions. These molecules aid in imparting steadiness on accumulated proteins and defending them from aggregating. In the current study, we performed an advanced sampling technique, replica-exchange molecular dynamics (REMD) simulations, to investigate the activities of osmolytes, with guanidine hydrochloride (G-HCL) acting as a denaturant and l-proline (l-PRO) acting as a counter-denaturant, and to explore the regulation and aggregation of Aß and hIAPP. We report that G-HCL and l-PRO have noticeable natural effects on Aß and hIAPP, leading to conformation modulation. Our results highlight that G-HCL attenuates peptide aggregation and transitions peptides into unfolded conformations, while l-PRO helps produce folded conformations of Aß and hIAPP.

14.
RSC Adv ; 10(43): 25929-25946, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35518630

RESUMO

Aberrant misfolding and amyloid aggregation, which result in amyloid fibrils, are frequent and critical pathological incidents in various neurodegenerative disorders. Multiple drugs or inhibitors have been investigated to avert amyloid aggregation in individual peptides, exhibiting sequence-dependent inhibition mechanisms. Establishing or inventing inhibitors capable of preventing amyloid aggregation in a wide variety of amyloid peptides is quite a daunting task. Bleomycin (BLM), a complex glycopeptide, has been widely used as an antibiotic and antitumor drug due to its ability to inhibit DNA metabolism, and as an antineoplastic, especially for solid tumors. In this study, we investigated the dual inhibitory effects of BLM on Aß aggregation, associated with Alzheimer's disease and hIAPP, which is linked to type 2 diabetes, using both computational and experimental techniques. Combined results from drug repurposing and replica exchange molecular dynamics simulations demonstrate that BLM binds to the ß-sheet region considered a hotspot for amyloid fibrils of Aß and hIAPP. BLM was also found to be involved in ß-sheet destabilization and, ultimately, in its reduction. Further, experimental validation through in vitro amyloid aggregation assays was obtained wherein the fibrillar load was decreased for the BLM-treated Aß and hIAPP peptides in comparison to controls. For the first time, this study shows that BLM is a dual inhibitor of Aß and hIAPP amyloid aggregation. In the future, the conformational optimization and processing of BLM may help develop various efficient sequence-dependent inhibitors against amyloid aggregation in various amyloid peptides.

15.
Microb Pathog ; 129: 152-160, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30731190

RESUMO

The failure of drugs for effective treatment against infectious diseases can be attributed to resistant forms of causative agents. The evasive nature of Mycobacterium tuberculosis is partly associated to its physical features, such as having a thick cell wall and incorporation of beneficial mutations leading to drug resistance. The pro drug Isoniazid (INH) interacts with an enzyme catalase peroxidase to get converted into its active form and upon activation stops the cell wall synthesis thus killing the Mycobacterium. The most common mutation i.e. S315T leads to high degree of drug resistance by virtue of its position in the active site. Here, we have characterized the prominent attributes of two double mutant isolates S315 T/D194G and S315T/M624V which are multi drug resistant and extremely drug resistant, respectively. Protein models were generated using the crystal structure which were then subjected to energy minimization and long term molecular dynamics simulations. Further, computational analysis showed decreasing ability of INH binding to the mutants in order of: Native > S315T/D194G > S315T/M624V. Also, a trend was observed that as the docking score and binding area decreased, there was a significant increase in the distortion of the 3D geometry of the mutants as observed by PCA analysis.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Catalase/genética , Farmacorresistência Bacteriana , Isoniazida/farmacologia , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Catalase/química , Catalase/metabolismo , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mycobacterium tuberculosis/genética , Ligação Proteica , Conformação Proteica
16.
J Biomol Struct Dyn ; 37(8): 2098-2109, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30044169

RESUMO

Outbreak of Human Herpes virus-5 (HHV-5) infection in emerging countries has raised worldwide health concern owing to prevalence of congenital impairments and life threatening consequences in immunocompromised individuals. Thus, there lies an impending need to develop vaccine against HHV-5. HHV-5 enters into host cells with the help of necessary components glycoprotein B (gB) and H/L. In this study, the conformational linear B-cell and T-cell epitopes for gB of HHV-5 have been predicted using conformational approaches, for their possible collective use as vaccine candidates. We examined epitope's interactions with major histocompatibility complexes using molecular docking and also investigated their stable binding with specific toll like receptor-2 (TLR2), present on host cells during HHV-5 infection. Predicted MHC-I epitope 'LVAIAVVII' with high antigenicity and large coverage of HLA alleles was found to superimpose on MHC-II epitope (Rank 1) and was also identified to be the core sequence of putative B cell epitope 'ILVAIAVVIITYLI'. Resulting epitope was found to have consistent interaction with TLR2 during long term (100 ns) MD run. We also validated this nonamer epitope for its dissimilarity with human genome and high population coverage, suggesting it to be a potential vaccine candidate with higher coverage for both the MHC alleles of Indian population. Communicated by Ramaswamy H. Sarma.


Assuntos
Antígenos Virais/imunologia , Citomegalovirus/imunologia , Epitopos de Linfócito T/imunologia , Vacinas contra Herpesvirus/imunologia , Epitopos de Linfócito B/imunologia , Genoma Humano , Humanos , Índia , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Linfócitos T Citotóxicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Receptor 2 Toll-Like/química , Proteínas do Envelope Viral/química
17.
Int J Biochem Cell Biol ; 99: 19-27, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29571707

RESUMO

Alzheimer's disease is a severe brain illness that causes vast numbers of nerve cells in the brain to die, driven by the production and deposition of amyloid beta (Aß) peptides. Intrinsically disordered proteins (IDPs) generally lack stable structures and are abundant in nature. Aß peptide is a well-known IDP with a wide range of oligomeric forms. Dysfunctions in Aß lead to oligomerization, formation of fibrils, and neurodegenerative disorders or other forms of dementia. In this study, we used replica exchange molecular dynamics (REMD) to elucidate the roles of different osmolytes, particularly urea and trimethylamine N-oxide (TMAO), to study shifts in IDP populations. REMD samples the conformational space efficiently and at physiologically relevant temperatures, compared to conventional molecular dynamics that sample at a constant temperature. Urea is known to minimize the aggregation process, while TMAO is beneficial for its stabilizing action. The two osmolytes displayed characteristic effects on Aß peptides and resulted in progressive modulation of conformations. The present study underlines the hypothesis of "modulation of conformational ensembles" to explain the regulation and aggregation of IDPs.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/química , Proteínas Intrinsicamente Desordenadas/química , Metilaminas/química , Fragmentos de Peptídeos/química , Agregação Patológica de Proteínas , Ureia/química , Humanos
18.
PLoS One ; 13(2): e0190942, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29389942

RESUMO

HER-2 belongs to the human epidermal growth factor receptor (HER) family. Via different signal transduction pathways, HER-2 regulates normal cell proliferation, survival, and differentiation. Recently, it was reported that MCF10A, BT474, and MDA-MB-231 cells bearing the HER2 K753E mutation were resistant to lapatinib. Present study revealed that HER-2 mutant K753E showed some contrasting behaviour as compared to wild, L768S and V773L HER-2 in complex with lapatinib while similar to previously known lapatinib resistant L755S HER-2 mutant. Lapatinib showed stable but reverse orientation in binding site of K753E and the highest binding energy among studied HER2-lapatinib complexes but slightly lesser than L755S mutant. Results indicate that K753E has similar profile as L755S mutant for lapatinib. The interacting residues were also found different from other three studied forms as revealed by free energy decomposition and ligplot analysis.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Mutação , Inibidores de Proteínas Quinases/metabolismo , Quinazolinas/metabolismo , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Humanos , Lapatinib , Simulação de Dinâmica Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/química , Quinazolinas/química , Receptor ErbB-2/genética , Transdução de Sinais
19.
Chem Biol Drug Des ; 91(5): 1056-1064, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29336115

RESUMO

Fms-like tyrosine kinase 3 (FLT3) belongs to the receptor tyrosine kinase family and expressed in hematopoietic progenitor cells. FLT3 gene mutations are reported in ~30% of acute myeloid leukemia cases. FLT3 kinase domain mutation F691L is one of the common causes of acquired resistance to the FLT3 inhibitors including quizartinib. MZH29 and crenolanib were previously reported to inhibit FLT3 F691L. However, crenolanib was reported for the moderate inhibition. We found that Glu661and Asp829 were the most significant residues to target the FLT3 F691L which contribute most significantly to the binding energy with MZH29 and crenolanib. These interactions were found absent with quizartinib. Further free energy landscape analysis revealed that FLT3 F691L bound to MZH29 and crenolanib was more stable as compared to quizartinib.


Assuntos
Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Benzimidazóis/química , Benzimidazóis/metabolismo , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Mutagênese Sítio-Dirigida , Piperidinas/química , Piperidinas/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Termodinâmica , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
20.
Sci Rep ; 8(1): 903, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343701

RESUMO

The enzyme Pantothenate synthetase (PS) represents a potential drug target in Mycobacterium tuberculosis. Its X-ray crystallographic structure has demonstrated the significance and importance of conserved active site residues including His44, His47, Asn69, Gln72, Lys160 and Gln164 in substrate binding and formation of pantoyl adenylate intermediate. In the current study, molecular mechanism of decreased affinity of the enzyme for ATP caused by alanine mutations was investigated using molecular dynamics (MD) simulations and free energy calculations. A total of seven systems including wild-type + ATP, H44A + ATP, H47A + ATP, N69A + ATP, Q72A + ATP, K160A + ATP and Q164A + ATP were subjected to 50 ns MD simulations. Docking score, MM-GBSA and interaction profile analysis showed weak interactions between ATP (substrate) and PS (enzyme) in H47A and H160A mutants as compared to wild-type, leading to reduced protein catalytic activity. However, principal component analysis (PCA) and free energy landscape (FEL) analysis revealed that ATP was strongly bound to the catalytic core of the wild-type, limiting its movement to form a stable complex as compared to mutants. The study will give insight about ATP binding to the PS at the atomic level and will facilitate in designing of non-reactive analogue of pantoyl adenylate which will act as a specific inhibitor for PS.


Assuntos
Trifosfato de Adenosina/metabolismo , Alanina/genética , Sítios de Ligação/genética , Domínio Catalítico/genética , Mutação/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Monofosfato de Adenosina/genética , Trifosfato de Adenosina/genética , Catálise , Cristalografia por Raios X/métodos , Cinética , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/genética , Ligação Proteica/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA