Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Front Psychol ; 15: 1323397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770250

RESUMO

Background: Attention deficit hyperactivity disorder (ADHD) is a neurobiological disorder characterized by inattention, hyperactivity, and impulsivity. We hypothesized that chiropractic adjustments could improve these symptoms by enhancing prefrontal cortex function. This pilot study aimed to explore the feasibility and efficacy of 4 weeks of chiropractic adjustment on inattention, hyperactivity, and impulsivity in children with ADHD. Methods: 67 children with ADHD were randomly allocated to receive either chiropractic adjustments plus usual care (Chiro+UC) or sham chiropractic plus usual care (Sham+UC). The Vanderbilt ADHD Diagnostic Teacher Rating Scale (VADTRS), Swanson, Nolan and Pelham Teacher and Parents Rating Scale (SNAP-IV), and ADHD Rating Scale-IV were used to assess outcomes at baseline, 4 weeks, and 8 weeks. Feasibility measures such as recruitment, retention, blinding, safety, and adherence were recorded. Linear mixed regression models were used for data analysis. Results: 56 participants (mean age ± SD: 10.70 ± 3.93 years) were included in the analysis. Both the Chiro+UC and Sham+UC groups showed significant improvements in total and subscale ADHD scores at 4 weeks and 8 weeks. However, there were no significant differences between the two groups. Conclusion: This pilot study demonstrated that it was feasible to examine the effects of chiropractic adjustment when added to usual care on ADHD outcomes in children. While both groups showed improvements, the lack of significant between-group differences requires caution in interpretation due to the small sample size. Further research with larger samples and longer follow-up periods is needed to conclusively evaluate the effects of chiropractic adjustments on ADHD in children.

2.
J Integr Neurosci ; 23(5): 98, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38812396

RESUMO

OBJECTIVES: In this study, we explored the effects of chiropractic spinal adjustments on resting-state electroencephalography (EEG) recordings and early somatosensory evoked potentials (SEPs) in Alzheimer's and Parkinson's disease. METHODS: In this randomized cross-over study, 14 adults with Alzheimer's disease (average age 67 ± 6 years, 2 females:12 males) and 14 adults with Parkinson's disease (average age 62 ± 11 years, 1 female:13 males) participated. The participants underwent chiropractic spinal adjustments and a control (sham) intervention in a randomized order, with a minimum of one week between each intervention. EEG was recorded before and after each intervention, both during rest and stimulation of the right median nerve. The power-spectra was calculated for resting-state EEG, and the amplitude of the N30 peak was assessed for the SEPs. The source localization was performed on the power-spectra of resting-state EEG and the N30 SEP peak. RESULTS: Chiropractic spinal adjustment significantly reduced the N30 peak in individuals with Alzheimer's by 15% (p = 0.027). While other outcomes did not reach significance, resting-state EEG showed an increase in absolute power in all frequency bands after chiropractic spinal adjustments in individuals with Alzheimer's and Parkinson's disease. The findings revealed a notable enhancement in connectivity within the Default Mode Network (DMN) at the alpha, beta, and theta frequency bands among individuals undergoing chiropractic adjustments. CONCLUSIONS: We found that it is feasible to record EEG/SEP in individuals with Alzheimer's and Parkinson's disease. Additionally, a single session of chiropractic spinal adjustment reduced the somatosensory evoked N30 potential and enhancement in connectivity within the DMN at the alpha, beta, and theta frequency bands in individuals with Alzheimer's disease. Future studies may require a larger sample size to estimate the effects of chiropractic spinal adjustment on brain activity. Given the preliminary nature of our findings, caution is warranted when considering the clinical implications. CLINICAL TRIAL REGISTRATION: The study was registered by the Australian New Zealand Clinical Trials Registry (registration number ACTRN12618001217291 and 12618001218280).


Assuntos
Doença de Alzheimer , Estudos Cross-Over , Eletroencefalografia , Potenciais Somatossensoriais Evocados , Doença de Parkinson , Humanos , Feminino , Masculino , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Idoso , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/terapia , Pessoa de Meia-Idade , Potenciais Somatossensoriais Evocados/fisiologia , Projetos Piloto , Manipulação Quiroprática/métodos
3.
Sci Rep ; 14(1): 1159, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216596

RESUMO

Increasing evidence suggests that a high-velocity, low-amplitude (HVLA) thrust directed at a dysfunctional vertebral segment in people with subclinical spinal pain alters various neurophysiological measures, including somatosensory evoked potentials (SEPs). We hypothesized that an HVLA thrust applied to a clinician chosen vertebral segment based on clinical indicators of vertebral dysfunction, in short, segment considered as "relevant" would significantly reduce the N30 amplitude compared to an HVLA thrust applied to a predetermined vertebral segment not based on clinical indicators of vertebral dysfunction or segment considered as "non-relevant". In this double-blinded, active-controlled, parallel-design study, 96 adults with recurrent mild neck pain, ache, or stiffness were randomly allocated to receiving a single thrust directed at either a segment considered as "relevant" or a segment considered as "non-relevant" in their upper cervical spine. SEPs of median nerve stimulation were recorded before and immediately after a single HVLA application delivered using an adjusting instrument (Activator). A linear mixed model was used to assess changes in the N30 amplitude. A significant interaction between the site of thrust delivery and session was found (F1,840 = 9.89, p < 0.002). Pairwise comparisons showed a significant immediate decrease in the N30 complex amplitude after the application of HVLA thrust to a segment considered "relevant" (- 16.76 ± 28.32%, p = 0.005). In contrast, no significant change was observed in the group that received HVLA thrust over a segment considered "non-relevant" (p = 0.757). Cervical HVLA thrust applied to the segment considered as "relevant" altered sensorimotor parameters, while cervical HVLA thrust over the segment considered as "non-relevant" did not. This finding supports the hypothesis that spinal site targeting of HVLA interventions is important when measuring neurophysiological responses. Further studies are needed to explore the potential clinical relevance of these findings.


Assuntos
Manipulação da Coluna , Fenômenos Fisiológicos do Sistema Nervoso , Adulto , Humanos , Vértebras Cervicais , Pescoço , Cervicalgia
4.
Brain Sci ; 13(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37371424

RESUMO

Non-specific low back pain (NSLBP) is a significant and pervasive public health issue in contemporary society. Despite the widespread prevalence of NSLBP, our understanding of its underlying causes, as well as our capacity to provide effective treatments, remains limited due to the high diversity in the population that does not respond to generic treatments. Clustering the NSLBP population based on shared characteristics offers a potential solution for developing personalized interventions. However, the complexity of NSLBP and the reliance on subjective categorical data in previous attempts present challenges in achieving reliable and clinically meaningful clusters. This study aims to explore the influence and importance of objective, continuous variables related to NSLBP and how to use these variables effectively to facilitate the clustering of NSLBP patients into meaningful subgroups. Data were acquired from 46 subjects who performed six simple movement tasks (back extension, back flexion, lateral trunk flexion right, lateral trunk flexion left, trunk rotation right, and trunk rotation left) at two different speeds (maximum and preferred). High-density electromyography (HD EMG) data from the lower back region were acquired, jointly with motion capture data, using passive reflective markers on the subject's body and clusters of markers on the subject's spine. An exploratory analysis was conducted using a deep neural network and factor analysis. Based on selected variables, various models were trained to classify individuals as healthy or having NSLBP in order to assess the importance of different variables. The models were trained using different subsets of data, including all variables, only anthropometric data (e.g., age, BMI, height, weight, and sex), only biomechanical data (e.g., shoulder and lower back movement), only neuromuscular data (e.g., HD EMG activity), or only balance-related data. The models achieved high accuracy in categorizing individuals as healthy or having NSLBP (full model: 93.30%, anthropometric model: 94.40%, biomechanical model: 84.47%, neuromuscular model: 88.07%, and balance model: 74.73%). Factor analysis revealed that individuals with NSLBP exhibited different movement patterns to healthy individuals, characterized by slower and more rigid movements. Anthropometric variables (age, sex, and BMI) were significantly correlated with NSLBP components. In conclusion, different data types, such as body measurements, movement patterns, and neuromuscular activity, can provide valuable information for identifying individuals with NSLBP. To gain a comprehensive understanding of NSLBP, it is crucial to investigate the main domains influencing its prognosis as a cohesive unit rather than studying them in isolation. Simplifying the conditions for acquiring dynamic data is recommended to reduce data complexity, and using back flexion and trunk rotation as effective options should be further explored.

5.
J Clin Med ; 11(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36556107

RESUMO

Certain blood biomarkers are associated with neural protection and neural plasticity in healthy people and individuals with prior brain injury. To date, no studies have evaluated the effects chiropractic care on serum brain-derived neurotrophic factor (BDNF), insulin-like growth factor-II (IGF-II) and glial cell-derived neurotrophic factor (GDNF) in people with stroke. This manuscript reports pre-specified, exploratory, secondary outcomes from a previously completed parallel group randomized controlled trial. We evaluated differences between four weeks of chiropractic spinal adjustments combined with the usual physical therapy (chiro + PT) and sham chiropractic with physical therapy (sham + PT) on resting serum BDNF, IGF-II and GDNF in 63 adults with chronic stroke. Blood samples were assessed at baseline, four weeks (post-intervention), and eight weeks (follow-up). Data were analyzed using a linear multivariate mixed effects model. Within both groups there was a significant decrease in the mean log-concentration of BDNF and IGF-II at each follow-up, and significant increase log-concentration of GDNF at eight-weeks' follow-up. However, no significant between-group differences in any of the blood biomarkers at each time-point were found. Further research is required to explore which factors influence changes in serum BDNF, IGF-II and GDNF following chiropractic spinal adjustments and physical therapy.

6.
Ann Clin Transl Neurol ; 9(5): 722-733, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35488791

RESUMO

OBJECTIVE: We propose a novel cue-based asynchronous brain-computer interface(BCI) for neuromodulation via the pairing of endogenous motor cortical activity with the activation of somatosensory pathways. METHODS: The proposed BCI detects the intention to move from single-trial EEG signals in real time, but, contrary to classic asynchronous-BCI systems, the detection occurs only during time intervals when the patient is cued to move. This cue-based asynchronous-BCI was compared with two traditional BCI modes (asynchronous-BCI and offline synchronous-BCI) and a control intervention in chronic stroke patients. The patients performed ankle dorsiflexion movements of the paretic limb in each intervention while their brain signals were recorded. BCI interventions decoded the movement attempt and activated afferent pathways via electrical stimulation. Corticomotor excitability was assessed using motor-evoked potentials in the tibialis-anterior muscle induced by transcranial magnetic stimulation before, immediately after, and 30 min after the intervention. RESULTS: The proposed cue-based asynchronous-BCI had significantly fewer false positives/min and false positives/true positives (%) as compared to the previously developed asynchronous-BCI. Linear-mixed-models showed that motor-evoked potential amplitudes increased following all BCI modes immediately after the intervention compared to the control condition (p <0.05). The proposed cue-based asynchronous-BCI resulted in the largest relative increase in peak-to-peak motor-evoked potential amplitudes(141% ± 33%) among all interventions and sustained it for 30 min(111% ± 33%). INTERPRETATION: These findings prove the high performance of a newly proposed cue-based asynchronous-BCI intervention. In this paradigm, individuals receive precise instructions (cue) to promote engagement, while the timing of brain activity is accurately detected to establish a precise association with the delivery of sensory input for plasticity induction.


Assuntos
Interfaces Cérebro-Computador , Acidente Vascular Cerebral , Sinais (Psicologia) , Potencial Evocado Motor/fisiologia , Humanos , Acidente Vascular Cerebral/terapia , Estimulação Magnética Transcraniana/métodos
7.
Medicina (Kaunas) ; 57(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071880

RESUMO

The current COVID-19 pandemic has necessitated the need to find healthcare solutions that boost or support immunity. There is some evidence that high-velocity, low-amplitude (HVLA) controlled vertebral thrusts have the potential to modulate immune mediators. However, the mechanisms of the link between HVLA controlled vertebral thrusts and neuroimmune function and the associated potential clinical implications are less clear. This review aims to elucidate the underlying mechanisms that can explain the HVLA controlled vertebral thrust--neuroimmune link and discuss what this link implies for clinical practice and future research needs. A search for relevant articles published up until April 2021 was undertaken. Twenty-three published papers were found that explored the impact of HVLA controlled vertebral thrusts on neuroimmune markers, of which eighteen found a significant effect. These basic science studies show that HVLA controlled vertebral thrust influence the levels of immune mediators in the body, including neuropeptides, inflammatory markers, and endocrine markers. This narravtive review discusses the most likely mechanisms for how HVLA controlled vertebral thrusts could impact these immune markers. The mechanisms are most likely due to the known changes in proprioceptive processing that occur within the central nervous system (CNS), in particular within the prefrontal cortex, following HVLA spinal thrusts. The prefrontal cortex is involved in the regulation of the autonomic nervous system, the hypothalamic-pituitary-adrenal axis and the immune system. Bi-directional neuro-immune interactions are affected by emotional or pain-related stress. Stress-induced sympathetic nervous system activity also alters vertebral motor control. Therefore, there are biologically plausible direct and indirect mechanisms that link HVLA controlled vertebral thrusts to the immune system, suggesting HVLA controlled vertebral thrusts have the potential to modulate immune function. However, it is not yet known whether HVLA controlled vertebral thrusts have a clinically relevant impact on immunity. Further research is needed to explore the clinical impact of HVLA controlled vertebral thrusts on immune function.


Assuntos
COVID-19 , Manipulação da Coluna , Humanos , Sistema Hipotálamo-Hipofisário , Pandemias , Sistema Hipófise-Suprarrenal , SARS-CoV-2
8.
Brain Sci ; 11(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064209

RESUMO

Chiropractic spinal adjustments have been shown to result in short-term increases in muscle strength in chronic stroke patients, however, the effect of longer-term chiropractic spinal adjustments on people with chronic stroke is unknown. This exploratory study assessed whether 4 weeks of chiropractic spinal adjustments, combined with physical therapy (chiro + PT), had a greater impact than sham chiropractic with physical therapy (sham + PT) did on motor function (Fugl Meyer Assessment, FMA) in 63 subacute or chronic stroke patients. Secondary outcomes included health-related quality of life and other measures of functional mobility and disability. Outcomes were assessed at baseline, 4 weeks (post-intervention), and 8 weeks (follow-up). Data were analyzed using linear mixed-effects models or generalized linear mixed models. A post-hoc responder analysis was performed to investigate the clinical significance of findings. At 4 weeks, there was a larger effect of chiro + PT, compared with sham + PT, on the FMA (difference = 6.1, p = 0.04). The responder analysis suggested the improvements in motor function seen following chiropractic spinal adjustments may have been clinically significant. There was also a robust improvement in both groups in most measures from baseline to the 4- and 8-week assessments, but between-group differences were no longer significant at the 8-week assessment. Four weeks of chiro + PT resulted in statistically significant improvements in motor function, compared with sham + PT, in people with subacute or chronic stroke. These improvements appear to be clinically important. Further trials, involving larger group sizes and longer follow-up and intervention periods, are required to corroborate these findings and further investigate the impacts of chiropractic spinal adjustments on motor function in post-stroke survivors. ClinicalTrials.gov Identifier NCT03849794.

9.
Eur J Appl Physiol ; 121(10): 2675-2720, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34164712

RESUMO

PURPOSE: There is growing evidence that vertebral column function and dysfunction play a vital role in neuromuscular control. This invited review summarises the evidence about how vertebral column dysfunction, known as a central segmental motor control (CSMC) problem, alters neuromuscular function and how spinal adjustments (high-velocity, low-amplitude or HVLA thrusts directed at a CSMC problem) and spinal manipulation (HVLA thrusts directed at segments of the vertebral column that may not have clinical indicators of a CSMC problem) alters neuromuscular function. METHODS: The current review elucidates the peripheral mechanisms by which CSMC problems, the spinal adjustment or spinal manipulation alter the afferent input from the paravertebral tissues. It summarises the contemporary model that provides a biologically plausible explanation for CSMC problems, the manipulable spinal lesion. This review also summarises the contemporary, biologically plausible understanding about how spinal adjustments enable more efficient production of muscular force. The evidence showing how spinal dysfunction, spinal manipulation and spinal adjustments alter central multimodal integration and motor control centres will be covered in a second invited review. RESULTS: Many studies have shown spinal adjustments increase voluntary force and prevent fatigue, which mainly occurs due to altered supraspinal excitability and multimodal integration. The literature suggests physical injury, pain, inflammation, and acute or chronic physiological or psychological stress can alter the vertebral column's central neural motor control, leading to a CSMC problem. The many gaps in the literature have been identified, along with suggestions for future studies. CONCLUSION: Spinal adjustments of CSMC problems impact motor control in a variety of ways. These include increasing muscle force and preventing fatigue. These changes in neuromuscular function most likely occur due to changes in supraspinal excitability. The current contemporary model of the CSMC problem, and our understanding of the mechanisms of spinal adjustments, provide a biologically plausible explanation for how the vertebral column's central neural motor control can dysfunction, can lead to a self-perpetuating central segmental motor control problem, and how HVLA spinal adjustments can improve neuromuscular function.


Assuntos
Quiroprática , Vértebras Lombares/fisiopatologia , Manipulação da Coluna , Força Muscular/fisiologia , Humanos , Atividade Motora/fisiologia , Junção Neuromuscular/fisiologia
10.
Front Neurol ; 12: 747261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185747

RESUMO

This study aimed to investigate the effects of a single session of chiropractic spinal adjustment on the cortical drive to the lower limb in chronic stroke patients. In a single-blinded, randomized controlled parallel design study, 29 individuals with chronic stroke and motor weakness in a lower limb were randomly divided to receive either chiropractic spinal adjustment or a passive movement control intervention. Before and immediately after the intervention, transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs) were recorded from the tibialis anterior (TA) muscle of the lower limb with the greatest degree of motor weakness. Differences in the averaged peak-peak MEP amplitude following interventions were calculated using a linear regression model. Chiropractic spinal adjustment elicited significantly larger MEP amplitude (pre = 0.24 ± 0.17 mV, post = 0.39 ± 0.23 mV, absolute difference = +0.15 mV, relative difference = +92%, p < 0.001) compared to the control intervention (pre = 0.15 ± 0.09 mV, post = 0.16 ± 0.09 mV). The results indicate that chiropractic spinal adjustment increases the corticomotor excitability of ankle dorsiflexor muscles in people with chronic stroke. Further research is required to investigate whether chiropractic spinal adjustment increases dorsiflexor muscle strength and walking function in people with stroke.

11.
Brain Sci ; 10(12)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327476

RESUMO

Cerebellar transcranial direct current stimulation (ctDCS) is a non-invasive brain stimulation technique that alters neural plasticity through weak, continuous, direct currents delivered to the cerebellum. This study aimed to evaluate the feasibility of conducting a randomized controlled trial (RCT) delivering three consecutive days of ctDCS during split-belt treadmill training (SBTT) in people with chronic stroke. Using a double-blinded, parallel-group RCT design, eligible participants were randomly allocated to receive either active anodal ctDCS or sham ctDCS combined with SBTT on three consecutive days. Outcomes were assessed at one-week follow-up, using step length symmetry as a measure of motor learning and comfortable over-ground walking speed as a measure of walking capacity. The feasibility of the RCT protocol was evaluated based on recruitment, retention, protocol deviations and data completeness. The feasibility of the intervention was assessed based on safety, adherence and intervention fidelity. Of the 26 potential participants identified over four months, only four were enrolled in the study (active anodal ctDCS n = 1, sham ctDCS n = 3). Both the inclusion criteria and the fidelity of the SBTT relied upon the accurate estimation of step length asymmetry. The method used to determine the side of the step length asymmetry was unreliable and led to deviations in the protocol. The ctDCS intervention was well adhered to, safe, and delivered as per the planned protocol. Motor learning outcomes for individual participants revealed that treadmill step length symmetry remained unchanged for three participants but improved for one participant (sham ctDCS). Comfortable over-ground walking speed improved for two participants (sham ctDCS). The feasibility of the planned protocol and intervention was limited by intra-individual variability in the magnitude and side of the step length asymmetry. This limited the sample and compromised the fidelity of the SBTT intervention. To feasibly conduct a full RCT investigating the effect of ctDCS on locomotor adaptation, a reliable method of identifying and defining step length asymmetry in people with stroke is required. Future ctDCS research should either optimize the methods for SBTT delivery or utilize an alternative motor adaptation task.

12.
Healthcare (Basel) ; 8(4)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321904

RESUMO

There is growing evidence showing that spinal manipulation increases muscle strength in healthy individuals as well as in people with some musculoskeletal and neurological disorders. However, the underlying mechanism by which spinal manipulation changes muscle strength is less clear. This study aimed to assess the effects of a single spinal manipulation session on the electrophysiological and metabolic properties of the tibialis anterior (TA) muscle. Maximum voluntary contractions (MVC) of the ankle dorsiflexors, high-density electromyography (HDsEMG), intramuscular EMG, and near-infrared spectroscopy (NIRS) were recorded from the TA muscle in 25 participants with low level recurring spinal dysfunction using a randomized controlled crossover design. The following outcomes: motor unit discharge rate (MUDR), strength (force at MVC), muscle conduction velocity (CV), relative changes in oxy- and deoxyhemoglobin were assessed pre and post a spinal manipulation intervention and passive movement control. Repeated measures ANOVA was used to assess within and between-group differences. Following the spinal manipulation intervention, there was a significant increase in MVC (p = 0.02; avg 18.87 ± 28.35%) and a significant increase in CV in both the isometric steady-state (10% of MVC) contractions (p < 0.01; avg 22.11 ± 11.69%) and during the isometric ramp (10% of MVC) contractions (p < 0.01; avg 4.52 ± 4.58%) compared to the control intervention. There were no other significant findings. The observed TA strength and CV increase, without changes in MUDR, suggests that the strength changes observed following spinal manipulation are, in part, due to increased recruitment of larger, higher threshold motor units. Further research needs to investigate the longer term and potential functional effects of spinal manipulation in various patients who may benefit from improved muscle function and greater motor unit recruitment.

13.
Brain Sci ; 10(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066492

RESUMO

Single and double exponential models fitted to step length symmetry series are used to evaluate the timecourse of adaptation and de-adaptation in instrumented split-belt treadmill tasks. Whilst the nonlinear regression literature has developed substantially over time, the split-belt treadmill training literature has not been fully utilising the fruits of these developments. In this research area, the current methods of model fitting and evaluation have three significant limitations: (i) optimisation algorithms that are used for model fitting require a good initial guess for regression parameters; (ii) the coefficient of determination (R2) is used for comparing and evaluating models, yet it is considered to be an inadequate measure of fit for nonlinear regression; and, (iii) inference is based on comparison of the confidence intervals for the regression parameters that are obtained under the untested assumption that the nonlinear model has a good linear approximation. In this research, we propose a transformed set of parameters with a common language interpretation that is relevant to split-belt treadmill training for both the single and double exponential models. We propose parameter bounds for the exponential models which allow the use of particle swarm optimisation for model fitting without an initial guess for the regression parameters. For model evaluation and comparison, we propose the use of residual plots and Akaike's information criterion (AIC). A method for obtaining confidence intervals that does not require the assumption of a good linear approximation is also suggested. A set of MATLAB (MathWorks, Inc., Natick, MA, USA) functions developed in order to apply these methods are also presented. Single and double exponential models are fitted to both the group-averaged and participant step length symmetry series in an experimental dataset generating new insights into split-belt treadmill training. The proposed methods may be useful for research involving analysis of gait symmetry with instrumented split-belt treadmills. Moreover, the demonstration of the suggested statistical methods on an experimental dataset may help the uptake of these methods by a wider community of researchers that are interested in timecourse of motor training.

14.
Sci Rep ; 10(1): 11853, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678285

RESUMO

This study aimed to examine the effect of repeated anodal cerebellar transcranial direct current stimulation (ctDCS) on learning a split-belt treadmill task. Thirty healthy individuals randomly received three consecutive sessions of active or sham anodal ctDCS during split-belt treadmill training. Motor performance and strides to steady-state performance were evaluated before (baseline), during (adaptation), and after (de-adaptation) the intervention. The outcomes were measured one week later to assess absolute learning and during the intervention to evaluate cumulative, consecutive, and session-specific effects. Data were analysed using linear mixed-effects regression models. During adaptation, there was no significant difference in absolute learning between the groups (p > 0.05). During de-adaptation, a significant difference in absolute learning between the groups (p = 0.03) indicated slower de-adaptation with anodal ctDCS. Pre-planned secondary analysis revealed that anodal ctDCS significantly reduced the cumulative (p = 0.01) and consecutive-session effect (p = 0.01) on immediate adaptation. There were significant cumulative (p = 0.02) and session-specific effects (p = 0.003) on immediate de-adaptation. Repeated anodal ctDCS does not enhance motor learning measured during adaptation to a split-belt treadmill task. However, it influences the maintenance of learnt walking patterns, suggesting that it may be beneficial in maintaining therapeutic effects.


Assuntos
Adaptação Fisiológica/fisiologia , Cerebelo/fisiologia , Aprendizagem/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Caminhada/fisiologia , Adolescente , Adulto , Método Duplo-Cego , Teste de Esforço/psicologia , Humanos , Masculino
15.
Front Hum Neurosci ; 13: 328, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636552

RESUMO

Background: Cerebellar transcranial direct current stimulation (ctDCS) appears to modulate motor performance in both adaptation and motor skill tasks; however, whether the gains are long-lasting is unclear. Objectives: This systematic review aims to evaluate the effect of ctDCS with respect to different time scales of motor learning. Methods: Ten electronic databases (CINAHL, MEDLINE, SPORT Discus, Scopus, Web of Science, Cochrane via OVID, Evidence-Based Reviews (EBM) via OVID, AMED: Allied and Complementary Medicine, PsycINFO, and PEDro) were systematically searched. Studies evaluating the effect of ctDCS compared to sham ctDCS on motor learning in healthy individuals were selected and reviewed. Two authors independently reviewed the quality of the included studies using the revised Cochrane's risk-of-bias tool. The results were extracted with respect to the time scale in which changes in motor performance were evaluated. Results: Seventeen randomized controlled trials met the eligibility criteria of which 65% of the studies had a "high" risk-of-bias, and 35% had "some concerns." These studies included data from 629 healthy participants. Of the studies that evaluated the effect of anodal ctDCS during and immediately after the stimulation, four found enhanced, three found impaired, and ten found no effect on gains in motor performance. Of the studies that evaluated the effect of anodal ctDCS after a break of 24 h or more, seven found enhanced, two found impaired, and one found no effect on gains in motor performance. Of the studies that evaluated the effect of cathodal ctDCS across a range of time scales, five found impaired, one found enhanced, and five found no effect on gains in motor performance. Conclusions: In healthy individuals, anodal ctDCS appears to improve short to longer-term motor skill learning, whereas it appears to have no effect on gains in motor performance during and immediate after the stimulation. ctDCS may have potential to improve motor performance beyond the training period. The challenge of the motor task and its characteristics, and the stimulation parameters are likely to influence the effect of ctDCS on motor learning.

16.
Work ; 55(2): 399-411, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27689586

RESUMO

BACKGROUND: Studies have shown that farming is associated with many agricultural workers experiencing low back pain (LBP). The rehabilitation of these workers should facilitate their functioning, activities and level of participation in an adequate way. OBJECTIVE: The objectives of this study were to identify the health components associated with LBP and to evaluate the effectiveness of the interventions in returning agricultural workers with LBP to their vocation using the International Classification of Function (ICF) -based tools. METHODS: Thirty-one full time agricultural workers from 3 different Indian states were prospectively assessed using the ICF core set for LBP. ICF core sets permitted analysis of limitations of function from both the participant and rehabilitation team's perspectives. Each ICF category was rated using an ICF qualifier. The components identified were linked to the ICF categorical profile and assessment sheet. The clinicians identified the global, service program and cycle goals based on ICF. The participants' functioning was followed over a 4-month period. RESULTS: After intervention, the participants were able to undergo their routine activities without increases in pain. However, on returning to active farming, participants noted few improvements in the components d410 (changing basic body position), d415 (maintaining body position), d430 (lifting and carrying objects), d465 (moving around using equipment), d850 (remunerative employment) and d859 (work and employment, other specified and unspecified). CONCLUSION: The results of the study conclude that the current interventions for LBP are not effective in returning agriculture workers with LBP in India to pain-free farming. There is an urgent need to individualize the health needs of agriculture workers.


Assuntos
Agricultura , Dor Lombar/reabilitação , Adulto , Feminino , Humanos , Índia , Classificação Internacional de Funcionalidade, Incapacidade e Saúde , Remoção , Dor Lombar/prevenção & controle , Masculino , Pessoa de Meia-Idade , Movimento , Postura , Estudos Prospectivos , Recidiva , Retorno ao Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA