Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-20, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880982

RESUMO

The etiological agent of tuberculosis (TB), Mycobacterium tuberculosis, is a deadly pathogen that adapts to thrive within the host. Since 2020, the COVID-19 pandemic has had colossal health, societal, and economic consequences, which have affected the reporting of new incidences and mortality cases of TB. As per the WHO 2022 report, 10.6 million people were diagnosed with TB, and 1.6 million died worldwide. The increase in resistant strains of tuberculosis is making it more burdensome to reach the End TB strategy. A reliable and efficient TB vaccine that may avert both primary infection and recurrence of latent TB in adults and adolescents is of the utmost importance. In this study, we used computational techniques to predict the ability of HLA molecules to display epitopes for six TB proteins (PPE68, PE_PGRS17, EspC, LDT4, RpfD, and RpfC) to design the multi-epitope subunit vaccine. From the aimed proteins, the potential B-cell, helper T lymphocyte (HTL), and cytotoxic T lymphocyte (CTL) epitopes were predicted and linked together with LPA adjuvant, and the vaccine was designed. The vaccine's physicochemical analysis demonstrates that it is non-allergic, non-toxic, and antigenic. Then, the vaccine structure was predicted, improved, and verified to yield the optimal structure. The developed vaccine's binding mechanism with distinct immunogenic receptors (Tlr2 and MHC-II) was assessed utilizing molecular docking. The molecular dynamic simulation and MMPBSA analysis were performed to comprehend the complexes' dynamics and stability. The immune simulation was utilized to anticipate the vaccine's immunogenic attributes. In silico cloning was employed to demonstrate the efficient expression of the designed vaccine in E. coli as a host. Moreover, in vitro and in vivo animal testing is required to determine the efficacy of the in silico developed vaccine.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA