Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37370720

RESUMO

Chronic inflammation is now recognized as one of the major risk factors and molecular hallmarks of chronic prostatitis, benign prostatic hyperplasia (BPH), and prostate tumorigenesis. However, the molecular mechanisms by which chronic inflammation signaling contributes to the pathogenesis of these prostate diseases are poorly understood. Previous efforts to therapeutically target the upstream (e.g., TLRs and IL1-Rs) and downstream (e.g., NF-κB subunits and cytokines) inflammatory signaling molecules in people with these conditions have been clinically ambiguous and unsatisfactory, hence fostering the recent paradigm shift towards unraveling and understanding the functional roles and clinical significance of the novel and relatively underexplored inflammatory molecules and pathways that could become potential therapeutic targets in managing prostatic diseases. In this review article, we exclusively discuss the causal and molecular drivers of prostatitis, BPH, and prostate tumorigenesis, as well as the potential impacts of microbiome dysbiosis and chronic inflammation in promoting prostate pathologies. We specifically focus on the importance of some of the underexplored druggable inflammatory molecules, by discussing how their aberrant signaling could promote prostate cancer (PCa) stemness, neuroendocrine differentiation, castration resistance, metabolic reprogramming, and immunosuppression. The potential contribution of the IL1R-TLR-IRAK-NF-κBs signaling molecules and NLR/inflammasomes in prostate pathologies, as well as the prospective benefits of selectively targeting the midstream molecules in the various inflammatory cascades, are also discussed. Though this review concentrates more on PCa, we envision that the information could be applied to other prostate diseases. In conclusion, we have underlined the molecular mechanisms and signaling pathways that may need to be targeted and/or further investigated to better understand the association between chronic inflammation and prostate diseases.

2.
Cureus ; 14(3): e23461, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35371871

RESUMO

Dementia is an umbrella term used to describe a loss of cognitive function which results in the interference of an individual's daily life and activities. The most common form of dementia is Alzheimer's disease. Alzheimer's is classified as a progressive, debilitating neurodegenerative disease that results in disturbances to a patient's higher executive function, memory, language, and visuospatial orientation. Despite extensive research on Alzheimer's dementia, including both available and potential therapeutic modalities, this neurodegenerative disease is incurable and will continue to pose a major public health concern. Current treatment options for Alzheimer's focus on symptom management and/or delaying the progression of the disease. Therefore, new treatment strategies must be developed to combat such a deadly disease. One field of medicine that has garnered significant interest from researchers to potentially treat Alzheimer's is low-dose ionizing radiation. Various reports suggest that the brain's exposure to low doses of ionizing radiation may serve as a therapeutic modality for combating neurodegenerative diseases, including Alzheimer's dementia. This article serves as a review of the current available treatments for Alzheimer's disease and discusses recent studies that provide evidence for the potential use of low-dose ionizing radiation as a therapeutic in the treatment of Alzheimer's disease.

3.
J Med Food ; 16(2): 139-46, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23356442

RESUMO

Selectively inducing apoptosis in cancer cells is a much desired strategy when tolerance toward side effects is minimal during chemotherapy. In our search for natural products that can induce apoptosis in human cervical cancer cells (HeLa), we selected resveratrol and genistein for our study. We conducted several experiments to test whether genistein can synergistically enhance the apoptotic potential of resveratrol at doses lower than the usual cytotoxic dose. Both resveratrol and genistein were able to induce apoptosis by enhancing the activities of caspase-9 and caspase-3 by themselves and also in combination. After 24 h of exposure to resveratrol and genistein, individually or in combination, lowered mitochondrial membrane potential was observed in HeLa cells. In addition, the mitochondrial membrane potential in HeLa cells was decreased, forcing JC-1 to stay in the monomeric form. The monomeric JC-1(5,5',6,6' -tetrachloro-1,1',3,3'-tetraethyl benzimedazolyl carbocyanine iodide) emitted green fluorescence. In the control group, the color of the fluorescence was red due to aggregation of JC-1 in the physiological pH. The treatment groups exhibited DNA fragmentation as the hallmark of apoptotic nuclear features. We also detected an obvious decrease in the level of HDM2 gene expression after both individual and combination treatments with resveratrol and genistein. Our findings suggest that resveratrol and genistein when combined can induce apoptosis at doses lower than usual doses, through the activation of caspases cascade, and by decreasing the expression of HDM2.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Genisteína/farmacologia , Estilbenos/farmacologia , Caspase 3/genética , Caspase 9/genética , Ativação Enzimática/efeitos dos fármacos , Células HeLa , Humanos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Resveratrol
4.
J Cell Mol Med ; 16(11): 2631-6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22452992

RESUMO

Prostate cancer is one of the leading causes of death in men aged 40 to 55. Genistein isoflavone (4', 5', 7-trihydroxyisoflavone) is a dietary phytochemical with demonstrated anti-tumour activities in a variety of cancers. Topotecan Hydrochloride (Hycamtin) is an FDA-approved chemotherapy drug, primarily used for secondary treatment of ovarian, cervical and small cell lung cancers. This study was to demonstrate the potential anticancer efficacy of genistein-topotecan combination in LNCaP prostate cancer cells and the mechanism of the combination treatment. The LNCaP cells were grown in complete RPMI medium, and cultured at 37°C, 5% CO(2) for 24-48 hrs to achieve 70-90% confluency. The cells were treated with varying concentrations of genistein, topotecan and genistein-topotecan combination and incubated for 24 hrs. The treated cells were assayed for (i) post-treatment sensitivity using MTT assay and DNA fragmentation, (ii) treatment-induced apoptosis using caspase-3 and -9 binding assays and (iii) treatment-induced ROS generation levels. The overall data indicated that (i) both genistein and topotecan induce cellular death in LNCaP cells, (ii) genistein-topotecan combination was significantly more efficacious in reducing LNCaP cell viability compared with either genistein or topotecan alone, (iii) in all cases, cell death was primarily through apoptosis, via the activation of caspase-3 and -9, which are involved in the intrinsic pathway, (iv) ROS generation levels increased significantly with the genistein-topotecan combination treatment. Treatments involving genistein-topotecan combination may prove to be an attractive alternative phytotherapy or adjuvant therapy for prostate cancer.


Assuntos
Genisteína/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Topotecan/farmacologia , Anticarcinógenos/administração & dosagem , Anticarcinógenos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura , Fragmentação do DNA/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Genisteína/administração & dosagem , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Topotecan/administração & dosagem
5.
J Med Food ; 13(4): 842-50, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20553187

RESUMO

The prognosis for patients with metastasized prostate cancer is still poor, despite conventional aggressive therapeutic modalities. Several in vitro studies together with animal models and epidemiological studies have indicated that phytochemicals can be antitumorigenic and may be protective against human cancers. However, the potential antitumor effects of genistein isoflavone, a widely studied nutrient phytochemical, have been equivocal. In this study, we investigated the effects of genistein-selenium (Gn-Se) combination on chemosensitivity and matrix metalloproteinase-2 (MMP-2) expression levels in PC3 (hormone-independent) and LNCaP (hormone-dependent) prostate cancer cells. 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium staining and ATP bioassay showed that genistein, selenium, and Gn-Se combination significantly inhibited growth of LNCaP and PC3 cells in a dose- and time-dependent manner, independent of hormonal status, and with no significant differences in chemosensitivity between LNCaP and PC3. Gn-Se combination induced significantly the greatest growth inhibition in both cell lines. Growth inhibition was through apoptosis induction. The treatment-induced apoptotic cascades are caspase-dependent, with evidence of an alternative non-caspase pathway(s). Treatment also induced a dose- and time-dependent decrease in MMP-2 expression levels in PC3 and LNCaP with no significant differences between the two cells. Gn-Se combination induced the greatest depression in MMP-2. Overall, none of the treatment modalities had any significant inhibitory effect in normal prostate epithelial cells. The data obtained from the present study indicate that Gn-Se combination may have chemopreventive value and/or may be adjuvant to standard therapy for prostate tumors independent of hormonal status. MMP-2 expression in cancer cells has been associated with active invasion and metastasis.


Assuntos
Ciclo Celular/efeitos dos fármacos , Genisteína/farmacologia , Inibidores do Crescimento/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Selênio/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/fisiopatologia
6.
J Med Food ; 7(3): 274-83, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15383219

RESUMO

We completed a multicenter study of the effects of pomegranate cold-pressed (Oil) or supercritical CO(2)-extracted (S) seed oil, fermented juice polyphenols (W), and pericarp polyphenols (P) on human prostate cancer cell xenograft growth in vivo, and/or proliferation, cell cycle distribution, apoptosis, gene expression, and invasion across Matrigel, in vitro. Oil, W, and P each acutely inhibited in vitro proliferation of LNCaP, PC-3, and DU 145 human cancer cell lines. The dose of P required to inhibit cell proliferation of the prostate cancer cell line LNCaP by 50% (ED(50)) was 70 microg/mL, whereas normal prostate epithelial cells (hPrEC) were significantly less affected (ED(50) = 250 g/mL). These effects were mediated by changes in both cell cycle distribution and induction of apoptosis. For example, the androgen-independent cell line DU 145 showed a significant increase from 11% to 22% in G(2)/M cells (P <.05) by treatment with Oil (35 microg/mL) with a modest induction of apoptosis. In other cell lines/treatments, the apoptotic response predominated, for example, in PC-3 cells treated with P, at least partially through a caspase 3-mediated pathway. These cellular effects coincided with rapid changes in mRNA levels of gene targets. Thus, 4-hour treatment of DU 145 cells with Oil (35 microg/mL) resulted in significant 2.3 +/- 0.001-fold (mean +/- SEM) up-regulation of the cyclin-dependent kinase inhibitor p21((waf1/cip1)) (P <.01) and 0.6 +/- 0.14-fold down-regulation of c-myc (P <.05). In parallel, all agents potently suppressed PC-3 invasion through Matrigel, and furthermore P and S demonstrated potent inhibition of PC-3 xenograft growth in athymic mice. Overall, this study demonstrates significant antitumor activity of pomegranate-derived materials against human prostate cancer.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Lythraceae/química , Fitoterapia , Extratos Vegetais/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Quimioprevenção , Quimioterapia Adjuvante , Relação Dose-Resposta a Droga , Humanos , Masculino , Invasividade Neoplásica/prevenção & controle , Extratos Vegetais/farmacologia , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cancer Cell Int ; 4(1): 5, 2004 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-15315711

RESUMO

BACKGROUND: Prostate cancer is the second leading cause of male death in the United States. The incidence increases most rapidly with age, and multiple genetic and epigenetic factors have been implicated in the initiation, progression, and metastasis of the cancer. Nevertheless, scientific knowledge of the molecular mechanisms underlying the disease is still limited; and hence treatment has only been partially successful. The objective of the current studies was to examine the role of caspase 3 (CPP32) and NAD(P)H:quinone oxidoreductase (NQO1) in the signaling of genistein-and beta-lapachone (bLap)-induced apoptosis in human prostate carcinoma cells PC3. RESULTS: Both genistein and bLap produced dose-dependent growth inhibition and treatment-induced apoptosis in PC3. Treatment with caspase 3 inhibitor, DEVD-fmk before exposure to genistein, significantly inhibited caspase 3 expression and treatment-induced apoptosis; implicating CPP32 as the main target in genistein-induced apoptosis in PC3. Contrary to this observation, inhibition of CPP32 did not significantly influence bLap-induced apoptosis; implying that the major target of bLap-induced apoptosis may not be the caspase. Treatment with NQO1 inhibitor, dicoumarol (50 microM), prior to exposure of PC3 to bLap led to significant decrease in bLap toxicity concurrent with significant decrease in treatment-induced apoptosis; thus implicating NQO1 as the major target in beta-lapachone-induced apoptosis in PC3. In addition, the data demonstrated that NQO1 is the major target in bLap-genistein (combination)-induced apoptosis. On the contrary, blocking NQO1 activity did not significantly affect genistein-induced apoptosis; implying that NQO1 pathway may not be the main target for genistein-induced apoptosis in PC3 cells. Furthermore, blocking NQO1 and CPP32 did not confer 100% protection against genistein-induced or bLap-induced apoptosis. CONCLUSION: The data thus demonstrate that both genistein-and bLap-induced apoptosis are mostly but not completely dependent on CPP32 and NQO1 respectively. Other minor alternate death pathways may be involved. This suggests that some death receptor signals do not utilize the caspase CPP32 and/or the NQO1 death pathways in PC3. The demonstrated synergism between genistein and bLap justifies consideration of these phytochemicals in chemotherapeutic strategic planning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA