RESUMO
Parkinson's disease (PD) is an increasingly prevalent and currently incurable neurodegenerative disorder linked to the accumulation of α-synuclein (αS) protein aggregates in the nervous system. While αS binding to membranes in its monomeric state is correlated to its physiological role, αS oligomerization and subsequent aberrant interactions with lipid bilayers have emerged as key steps in PD-associated neurotoxicity. However, little is known of the mechanisms that govern the interactions of oligomeric αS (OαS) with lipid membranes and the factors that modulate such interactions. This is in large part due to experimental challenges underlying studies of OαS-membrane interactions due to their dynamic and transient nature. Here, we address this challenge by using a suite of microfluidics-based assays that enable in-solution quantification of OαS-membrane interactions. We find that OαS bind more strongly to highly curved, rather than flat, lipid membranes. By comparing the membrane-binding properties of OαS and monomeric αS (MαS), we further demonstrate that OαS bind to membranes with up to 150-fold higher affinity than their monomeric counterparts. Moreover, OαS compete with and displace bound MαS from the membrane surface, suggesting that disruption to the functional binding of MαS to membranes may provide an additional toxicity mechanism in PD. These findings present a binding mechanism of oligomers to model membranes, which can potentially be targeted to inhibit the progression of PD.
Assuntos
Bicamadas Lipídicas , alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Humanos , Ligação Proteica , Multimerização ProteicaRESUMO
PR65 is the HEAT repeat scaffold subunit of the heterotrimeric protein phosphatase 2A (PP2A) and an archetypal tandem repeat protein. Its conformational mechanics plays a crucial role in PP2A function by opening/closing substrate binding/catalysis interface. Using in silico saturation mutagenesis, we identified PR65 "hinge" residues whose substitutions could alter its conformational adaptability and thereby PP2A function, and selected six mutations that were verified to be expressed and soluble. Molecular simulations and nanoaperture optical tweezers revealed consistent results on the specific effects of the mutations on the structure and dynamics of PR65. Two mutants observed in simulations to stabilize extended/open conformations exhibited higher corner frequencies and lower translational scattering in experiments, indicating a shift toward extended conformations, whereas another displayed the opposite features, confirmed by both simulations and experiments. The study highlights the power of single-molecule nanoaperture-based tweezers integrated with in silico approaches for exploring the effect of mutations on protein structure and dynamics.
Assuntos
Conformação Proteica , Proteína Fosfatase 2 , Humanos , Simulação de Dinâmica Molecular , Pinças Ópticas , Mutação Puntual , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/química , Proteína Fosfatase 2/metabolismoRESUMO
PR65 is the HEAT-repeat scaffold subunit of the heterotrimeric protein phosphatase 2A (PP2A) and an archetypal tandem-repeat protein, forming a spring-like architecture. PR65 conformational mechanics play a crucial role in PP2A function by opening/closing the substrate-binding/catalysis interface. Using in-silico saturation mutagenesis we identified "hinge" residues of PR65, whose substitutions are predicted to restrict its conformational adaptability and thereby disrupt PP2A function. Molecular simulations revealed that a subset of hinge mutations stabilized the extended/open conformation, whereas another had the opposite effect. By trapping in nanoaperture optical tweezer, we characterized PR65 motion and showed that the former mutants exhibited higher corner frequencies and lower translational scattering, indicating a shift towards extended conformations, whereas the latter showed the opposite behavior. Thus, experiments confirm the conformations predicted computationally. The study highlights the utility of nanoaperture-based tweezers for exploring structure and dynamics, and the power of integrating this single-molecule method with in silico approaches.
RESUMO
Parkinson's disease is associated with the aberrant aggregation of α-synuclein within brain cells. Although the causes of this process are still unclear, post-translational modifications of α-synuclein are likely to play a modulatory role. Since α-synuclein is constitutively N-terminally acetylated, we previously investigated how this protein modification affects the aggregation behavior of the protein using a variety of methods in vitro and in cell systems. This chapter describes the production of N-terminally acetylated (NTA) α-synuclein, the preparation of different seeds of NTA α-synuclein for aggregation assays and the experimental methods for the kinetic analysis of the aggregation process of NTA α-synuclein. We also detail our protocol to evaluate the effects of preformed protofibrils of NTA α-synuclein in cell-based assays. These methods can be applied to study other post-translational modifications of α-synuclein, or adapted for the study of N-acetylation of other aggregation-prone proteins.
Assuntos
Processamento de Proteína Pós-Traducional , alfa-Sinucleína , alfa-Sinucleína/química , Acetilação , CinéticaRESUMO
Liquid-liquid phase separation (LLPS) is an important mechanism enabling the dynamic compartmentalization of macromolecules, including complex polymers such as proteins and nucleic acids, and occurs as a function of the physicochemical environment. In the model plant, Arabidopsis thaliana, LLPS by the protein EARLY FLOWERING3 (ELF3) occurs in a temperature-sensitive manner and controls thermoresponsive growth. ELF3 contains a largely unstructured prion-like domain (PrLD) that acts as a driver of LLPS in vivo and in vitro. The PrLD contains a poly-glutamine (polyQ) tract, whose length varies across natural Arabidopsis accessions. Here, we use a combination of biochemical, biophysical, and structural techniques to investigate the dilute and condensed phases of the ELF3 PrLD with varying polyQ lengths. We demonstrate that the dilute phase of the ELF3 PrLD forms a monodisperse higher-order oligomer that does not depend on the presence of the polyQ sequence. This species undergoes LLPS in a pH- and temperature-sensitive manner and the polyQ region of the protein tunes the initial stages of phase separation. The liquid phase rapidly undergoes aging and forms a hydrogel as shown by fluorescence and atomic force microscopies. Furthermore, we demonstrate that the hydrogel assumes a semiordered structure as determined by small-angle X-ray scattering, electron microscopy, and X-ray diffraction. These experiments demonstrate a rich structural landscape for a PrLD protein and provide a framework to describe the structural and biophysical properties of biomolecular condensates.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Príons , Temperatura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Exacerbated hypochlorite (OCl-) production is linked to neurodegenerative processes, but there is growing evidence that lower levels of hypochlorite activity are important to protein homeostasis. In this study we characterise the effects of hypochlorite on the aggregation and toxicity of amyloid beta peptide 1-42 (Aß1-42), a major component of amyloid plaques that form in the brain in Alzheimer's disease. Our results demonstrate that treatment with hypochlorite promotes the formation of Aß1-42 assemblies ≥100 kDa that have reduced surface exposed hydrophobicity compared to the untreated peptide. This effect is the result of the oxidation of Aß1-42 at a single site as determined by mass spectrometry analysis. Although treatment with hypochlorite promotes the aggregation of Aß1-42, the solubility of the peptide is enhanced and amyloid fibril formation is inhibited as assessed by filter trap assay, thioflavin T assay and transmission electron microscopy. The results of in vitro assays using SH-SY5Y neuroblastoma cells show that pre-treatment of Aß1-42 with a sub-stoichiometric amount of hypochlorite substantially reduces its toxicity. The results of flow cytometry analysis and internalisation assays indicate that hypochlorite-induced modification of Aß1-42 reduces its toxicity via at least two-distinct mechanism, reducing the total binding of Aß1-42 to the surface of cells and facilitating the cell surface clearance of Aß1-42 to lysosomes. Our data is consistent with a model in which tightly regulated production of hypochlorite in the brain is protective against Aß-induced toxicity.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Hipocloroso , Fragmentos de Peptídeos/farmacologiaRESUMO
Mutations in the SNCA gene, which encodes the protein α-synuclein, have been linked with early onset Parkinson's disease. The exact nature of this association, however, is still poorly understood. To investigate this problem, we started from the observation that α-synuclein is constitutively N-terminally acetylated, a post-translational modification that alters the charge and structure of α-synuclein molecules and affects their interaction with lipid membranes, as well as their aggregation process. We thus studied five N-terminal acetylated familial variants (A30P, E46K, H50Q, G51D and A53T) of α-synuclein through a wide range of biophysical assays to probe the microscopic steps in their aggregation process and the structures of the resulting aggregates. Our results reveal a great complexity in the combined effects of the disease-related mutations with N-terminal acetylation on the aggregation of α-synuclein, which underscores the great sensitivity to even relatively small perturbations of the behaviour of this protein.
Assuntos
Doença de Parkinson , Agregação Patológica de Proteínas , Processamento de Proteína Pós-Traducional , alfa-Sinucleína , Humanos , Acetilação , alfa-Sinucleína/química , alfa-Sinucleína/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismoRESUMO
Parkinson's disease is associated with the aberrant aggregation of α-synuclein. Although the causes of this process are still unclear, post-translational modifications of α-synuclein are likely to play a modulatory role. Since α-synuclein is constitutively N-terminally acetylated, we investigated how this post-translational modification alters the aggregation behavior of this protein. By applying a three-pronged aggregation kinetics approach, we observed that N-terminal acetylation results in a reduced rate of lipid-induced aggregation and slows down both elongation and fibril-catalyzed aggregate proliferation. An analysis of the amyloid fibrils produced by the aggregation process revealed different morphologies for the acetylated and non-acetylated forms in both lipid-induced aggregation and seed-induced aggregation assays. In addition, we found that fibrils formed by acetylated α-synuclein exhibit a lower ß-sheet content. These findings indicate that N-terminal acetylation of α-synuclein alters its lipid-dependent aggregation behavior, reduces its rate of in vitro aggregation, and affects the structural properties of its fibrillar aggregates.
Assuntos
Amiloide , alfa-Sinucleína , Acetilação , Amiloide/química , Lipídeos , Agregados Proteicos , Processamento de Proteína Pós-Traducional , alfa-Sinucleína/químicaRESUMO
A wide variety of oligomeric structures are formed during the aggregation of proteins associated with neurodegenerative diseases. Such soluble oligomers are believed to be key toxic species in the related disorders; therefore, identification of the structural determinants of toxicity is of upmost importance. Here, we analysed toxic oligomers of α-synuclein and its pathological variants in order to identify structural features that could be related to toxicity and found a novel structural polymorphism within G51D oligomers. These G51D oligomers can adopt a variety of ß-sheet-rich structures with differing degrees of α-helical content, and the helical structural content of these oligomers correlates with the level of induced cellular dysfunction in SH-SY5Y cells. This structure-function relationship observed in α-synuclein oligomers thus presents the α-helical structure as another potential structural determinant that may be linked with cellular toxicity in amyloid-related proteins.
Assuntos
Mutação , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Multimerização Proteica , alfa-Sinucleína/química , alfa-Sinucleína/genética , Humanos , Doenças Neurodegenerativas , Agregados Proteicos , Ligação Proteica , Multimerização Proteica/genética , Análise Espectral , alfa-Sinucleína/metabolismoRESUMO
The aberrant aggregation of proteins is a key molecular event in the development and progression of a wide range of neurodegenerative disorders. We have shown previously that squalamine and trodusquemine, two natural products in the aminosterol class, can modulate the aggregation of the amyloid-ß peptide (Aß) and of α-synuclein (αS), which are associated with Alzheimer's and Parkinson's diseases. In this work, we expand our previous analyses to two squalamine derivatives, des-squalamine and α-squalamine, obtaining further insights into the mechanism by which aminosterols modulate Aß and αS aggregation. We then characterize the ability of these small molecules to alter the physicochemical properties of stabilized oligomeric species in vitro and to suppress the toxicity of these aggregates to varying degrees toward human neuroblastoma cells. We found that, despite the fact that these aminosterols exert opposing effects on Aß and αS aggregation under the conditions that we tested, the modifications that they induced to the toxicity of oligomers were similar. Our results indicate that the suppression of toxicity is mediated by the displacement of toxic oligomeric species from cellular membranes by the aminosterols. This study, thus, provides evidence that aminosterols could be rationally optimized in drug discovery programs to target oligomer toxicity in Alzheimer's and Parkinson's diseases.
RESUMO
The propensity to self-assemble into amyloid fibrils with a shared cross-ß architecture is a generic feature of proteins. Amyloid-related diseases affect millions of people worldwide, yet they are incurable and cannot be effectively prevented, largely due to the irreversible assembly and extraordinary stability of amyloid fibrils. Recent studies suggest that labile amyloids may be possible in certain proteins containing low-complexity domains often involved in the formation of subcellular membraneless organelles. Although the fundamental understanding of this reversible amyloid folding process is completely missing, the current view is that a given protein sequence will result in either irreversible, as in most of the cases, or reversible amyloid fibrils, as in few exceptions. Here we show that two common globular proteins, human lysozyme and its homologue from hen egg white, can self-assemble into both reversible and irreversible amyloid fibrils depending on the folding path followed by the protein. In both folding states, the amyloid nature of the fibrils is demonstrated at the molecular level by its cross-ß structure, yet with substantial differences on the mesoscopic polymorphism and the labile nature of the amyloid state. Structural analysis shows that reversible and irreversible amyloid fibrils possess the same full-length protein sequence but different fibril core structures and ß-sheet arrangements. These results illuminate a mechanistic link between the reversible and irreversible nature of amyloids and highlight the central role of protein folding states in regulating the lability and reversibility of amyloids.
Assuntos
Amiloide/química , Muramidase/química , Animais , Galinhas , Humanos , Modelos Moleculares , Muramidase/metabolismo , Dobramento de ProteínaRESUMO
Misfolded protein oligomers are increasingly recognized as highly cytotoxic agents in a wide range of human disorders associated with protein aggregation. In this study, we assessed the possible uptake and resulting toxic effects of model protein oligomers administered to C. elegans through the culture medium. We used an automated machine-vision, high-throughput screening procedure to monitor the phenotypic changes in the worms, in combination with confocal microscopy to monitor the diffusion of the oligomers, and oxidative stress assays to detect their toxic effects. Our results suggest that the oligomers can diffuse from the intestinal lumen to other tissues, resulting in a disease phenotype. We also observed that pre-incubation of the oligomers with a molecular chaperone (αB-crystallin) or a small molecule inhibitor of protein aggregation (squalamine), reduced the oligomer absorption. These results indicate that exogenous misfolded protein oligomers can be taken up by the worms from their environment and spread across tissues, giving rise to pathological effects in regions distant from their place of absorbance.
Assuntos
Caenorhabditis elegans , Intestinos , Animais , Ensaios de Triagem em Larga Escala , FenótipoRESUMO
The aggregation of α-synuclein is a hallmark of Parkinson's disease (PD) and a variety of related neurological disorders. A number of mutations in this protein, including A30P and A53T, are associated with familial forms of the disease. Patients carrying the A30P mutation typically exhibit a similar age of onset and symptoms as sporadic PD, while those carrying the A53T mutation generally have an earlier age of onset and an accelerated progression. We report two C. elegans models of PD (PDA30P and PDA53T), which express these mutational variants in the muscle cells, and probed their behavior relative to animals expressing the wild-type protein (PDWT). PDA30P worms showed a reduced speed of movement and an increased paralysis rate, control worms, but no change in the frequency of body bends. By contrast, in PDA53T worms both speed and frequency of body bends were significantly decreased, and paralysis rate was increased. α-Synuclein was also observed to be less well localized into aggregates in PDA30P worms compared to PDA53T and PDWT worms, and amyloid-like features were evident later in the life of the animals, despite comparable levels of expression of α-synuclein. Furthermore, squalamine, a natural product currently in clinical trials for treating symptomatic aspects of PD, was found to reduce significantly the aggregation of α-synuclein and its associated toxicity in PDA53T and PDWT worms, but had less marked effects in PDA30P. In addition, using an antibody that targets the N-terminal region of α-synuclein, we observed a suppression of toxicity in PDA30P, PDA53T and PDWT worms. These results illustrate the use of these two C. elegans models in fundamental and applied PD research.
RESUMO
The accumulation in vital organs of amyloid fibrils made of mutational variants of lysozyme (HuL) is associated with a human systemic amyloid disease. The detailed comparison of the in vitro properties of the I56T and D67H amyloidogenic variants to those of the T70N non-amyloidogenic variant and the wild-type (WT) protein suggested that the deposition of large amounts of aggregated disease-related lysozyme variants is initiated by the formation of transient intermediate species. The ability to populate such intermediates is essentially due to the destabilisation of the protein and the loss of the global structural cooperativity under physiologically relevant conditions. Here, we report the characterisation of a third naturally occurring amyloidogenic lysozyme variant, W64R, in comparison with the I56T and WT proteins. The X-ray crystal structure of the W64R variant at 1.15 Å resolution is very similar to that of the WT protein; a few interactions within the ß-domain and at the interface between the α- and ß-domains differ, however, from those in the WT protein. Consequently, the W64R mutation destabilizes the protein to an extent that is similar to that observed for the I56T and D67H mutations. The ΔG°NU(H2O) is reduced by 24 kJ·mol-1 and the Tm is about 12 °C lower than that of the WT protein. Under native conditions, the W64R and I56T proteins are readily digested by proteinase K, while the WT protein remains intact. These results suggest that the two variant proteins transiently populate similar partially unfolded states in which proteinase K cleavage sites are accessible to the protease. Moreover, the in vitro aggregation properties of the W64R protein are similar to those of the I56T variant. Altogether, these results indicate that the properties of the W64R protein are astonishingly similar to those of the I56T variant. They further corroborate the idea that HuL variants associated with the disease are those whose stability and global structural cooperativity are sufficiently reduced to allow the formation of aggregation prone partially folded intermediates under physiological conditions.
Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Humanos , Modelos Moleculares , Muramidase/química , Muramidase/metabolismo , Mutação , Agregados Proteicos , Conformação ProteicaRESUMO
Here we exploit the simple, ultra-stable, modular architecture of consensus-designed tetratricopeptide repeat proteins (CTPRs) to create a platform capable of displaying both single as well as multiple functions and with diverse programmable geometrical arrangements by grafting non-helical short linear binding motifs (SLiMs) onto the loops between adjacent repeats. As proof of concept, we built synthetic CTPRs to bind and inhibit the human tankyrase proteins (hTNKS), which play a key role in Wnt signaling and are upregulated in cancer. A series of mono-valent and multi-valent hTNKS binders was assembled. To fully exploit the modular scaffold and to further diversify the multi-valent geometry, we engineered the binding modules with two different formats, one monomeric and the other trimeric. We show that the designed proteins are stable, correctly folded and capable of binding to and inhibiting the cellular activity of hTNKS leading to downregulation of the Wnt pathway. Multivalency in both the CTPR protein arrays and the hTNKS target results in the formation of large macromolecular assemblies, which can be visualized both in vitro and in the cell. When delivered into the cell by nanoparticle encapsulation, the multivalent CTPR proteins displayed exceptional activity. They are able to inhibit Wnt signaling where small molecule inhibitors have failed to date. Our results point to the tremendous potential of the CTPR platform to exploit a range of SLiMs and assemble synthetic binding molecules with built-in multivalent capabilities and precise, pre-programmed geometries.
RESUMO
Aberrant soluble oligomers formed by the amyloid-ß peptide (Aß) are major pathogenic agents in the onset and progression of Alzheimer's disease. A variety of biomolecules can influence the formation of these oligomers in the brain, although their mechanisms of action are still largely unknown. Here, we studied the effects on Aß aggregation of DOPAL, a reactive catecholaldehyde intermediate of dopamine metabolism. We found that DOPAL is able to stabilize Aß oligomeric species, including dimers and trimers, that exert toxic effects on human neuroblastoma cells, in particular increasing cytosolic calcium levels and promoting the generation of reactive oxygen species. These results reveal an interplay between Aß aggregation and key biochemical processes regulating cellular homeostasis in the brain.
Assuntos
Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Dopamina/metabolismo , Doença de Alzheimer/metabolismo , Linhagem Celular Tumoral , Escherichia coli , HumanosRESUMO
Naked mole-rats are extraordinarily long-lived rodents that offer unique opportunities to study the molecular origins of age-related neurodegenerative diseases. Remarkably, they do not accumulate amyloid plaques, even though their brains contain high concentrations of amyloid beta (Aß) peptide from a young age. Therefore, they represent a particularly favourable organism to study the mechanisms of resistance against Aß neurotoxicity. Here we examine the composition, phase behaviour, and Aß interactions of naked mole-rat brain lipids. Relative to mouse, naked mole-rat brain lipids are rich in cholesterol and contain sphingomyelin in lower amounts and of shorter chain lengths. Proteins associated with the metabolism of ceramides, sphingomyelins and sphingosine-1-phosphate receptor 1 were also found to be decreased in naked mole-rat brain lysates. Correspondingly, we find that naked mole-rat brain lipid membranes exhibit a high degree of phase separation, with the liquid ordered phase extending to 80% of the supported lipid bilayer. These observations are consistent with the 'membrane pacemaker' hypothesis of ageing, according to which long-living species have lipid membranes particularly resistant to oxidative damage. We also found that exposure to Aß disrupts naked mole-rat brain lipid membranes significantly, breaking the membrane into pieces while mouse brain derived lipids remain largely intact upon Aß exposure.
Assuntos
Peptídeos beta-Amiloides/toxicidade , Encéfalo/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Colesterol/metabolismo , Bicamadas Lipídicas/metabolismo , Lipidômica , Fragmentos de Peptídeos/toxicidade , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Membrana Celular/metabolismo , Membrana Celular/patologia , Feminino , Longevidade , Masculino , Camundongos Endogâmicos C57BL , Ratos-Toupeira , Especificidade da EspécieRESUMO
Oligomers comprised of misfolded proteins are implicated as neurotoxins in the pathogenesis of protein misfolding conditions such as Parkinson's and Alzheimer's diseases. Structural, biophysical, and biochemical characterization of these nanoscale protein assemblies is key to understanding their pathology and the design of therapeutic interventions, yet it is challenging due to their heterogeneous, transient nature and low relative abundance in complex mixtures. Here, we demonstrate separation of heterogeneous populations of oligomeric α-synuclein, a protein central to the pathology of Parkinson's disease, in solution using microfluidic free-flow electrophoresis. We characterize nanoscale structural heterogeneity of transient oligomers on a time scale of seconds, at least 2 orders of magnitude faster than conventional techniques. Furthermore, we utilize our platform to analyze oligomer ζ-potential and probe the immunochemistry of wild-type α-synuclein oligomers. Our findings contribute to an improved characterization of α-synuclein oligomers and demonstrate the application of microchip electrophoresis for the free-solution analysis of biological nanoparticle analytes.