Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2400812, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845480

RESUMO

Manufacturing high-performance and cost-affordable non-metallic, electroactive 1D carbon material for energy storage and hydrogen evolution reaction (HER) is of foremost importance to respond positively to the impending energy crisis. Porous N-doped carbon nanofiber (PNCNF) is successfully synthesized by electrospinning, using selenium nanoparticles as a sacrificial template (where Se is reutilized for ZIF-67 selenization as a bi-process, and the surface of PNCNF is modified with poly(3,4-ethylenedioxythiophene) (PNCNT/PEDOT) by electropolymerization. The prepared materials are found ideal for energy storage (supercapacitor) and electrocatalysis (HER). The bi-functional material has shown excellent energy storage capability with the specific capacitance (CS) of 230 F g-1 (PNCNF) and 395 F g-1 (PNCNF/PEDOT), and the symmetric supercapacitor device, PNCNF/PEDOT//PEDOT/PNCNF, exhibits 32.4 Wh kg-1 energy density at 14400 W kg-1 power density with 96.6% Coulombic efficiency and 106% CS at the end of 5000 charge-discharge cycles. The rate capability of the symmetric supercapacitor cell of PNCNF/PEDOT is 51% for the current density increase from 1 to 8 A g-1, while that of PNCNF is a meager 29% only. Electrocatalytic HER at the PNCNF electrode is achieved with an overpotential of 281 mV@10 mA cm-2 relative to the Pt/C electrode and a low Tafel slop value of 96 mV dec-1.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38814775

RESUMO

Opioid tampering and diversion pose a serious problem for hospital patients with potentially life-threatening consequences. The ongoing opioid crisis has resulted in medications used for pain management and anesthesia, such as fentanyl and morphine, being stolen, substituted with a different substance, and abused. This work aims to mitigate tampering and diversion through analytical verification of the administered drug before it enters the patient. We present an electrochemical-based sensor and miniaturized wireless potentiostat that enable real-time intravenous (IV) monitoring of opioids, specifically fentanyl and morphine. The proposed system is connected to an IV drip system during surgery or post-operation recovery. Measurement results of two opioids are presented, including calibration curves and data on the sensor performance concerning pH, temperature, interference, reproducibility, and long-term stability. Finally, we demonstrate real-time fluidic measurements connected to a flow cell to simulate IV administration and a blind study classified using a machine-learning algorithm. The system achieves limits of detection (LODs) of 1.26 µg/mL and 2.75 µg/mL for fentanyl and morphine, respectively, while operating with >1-month battery lifetime due to an optimized ultra-low power 36 µA sleep mode.

3.
Bioelectrochemistry ; 156: 108594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37984310

RESUMO

Viral pandemic diseases have disruptive global consequences leading to millions of deaths and a severe impact on the global economy. Inadequate preventative protocols have led to an overwhelming demand for intensive care leading to uncontrollable burdens and even breakdown of healthcare sectors across many countries. The rapid detection of viral disease helps in the understanding of the relevant intricacies, helping to tackle infection with improved guidelines. Portable biosensor devices offer promising solutions by facilitating on-site detection of viral pathogens. This review summarizes the latest innovative strategies reported using electroanalytical methods for the screening of viral antigens. The structural components of viruses and their categories are presented followed by the various recognition elements and transduction techniques involved in biosensors. Core sections focus on biosensors reported for viral genomic detection(DNA and RNA) and antigenic capsid protein. Strategies for addressing the challenges of electroanalytical biosensing of viral components are also presented. The advantages, and disadvantages of biorecognition elements and nanozymes for the detection of viral disease are highlighted. Such technical insights will help researchers working in chemistry, and biochemistry as well as clinicians working in medical diagnostics.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2 , Técnicas Biossensoriais/métodos , Pandemias
4.
Mikrochim Acta ; 190(10): 388, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700189

RESUMO

We are aiming to develop an electrochemical microcatheter sensor for the detection and real-time continuous monitoring of propofol (PPF), which is an anesthetic drug majorly used during medical treatment. This proposed microcatheter-based sensing strategy meets the challenge of real-time periodic and continuous monitoring of propofol by using d-Ti3C2Tx-rGO-chi-modified carbon paste microcatheter sensor transducer. The sensing methodology relies on voltammetry and chronoamperometry transduction methods. The reusable microcatheter sensor was fabricated by embedding the three electrodes into a few millimeters-wide Teflon tube. The nanocomposite was characterized using advanced analytical instruments such as XRD, FE-SEM, EDX, Raman spectroscopy, and XPS. Further, electrode interfacial properties were characterized with voltammetry and electrochemical impedance spectroscopy. The electroanalytical performance of the modified microcatheter sensor was tested for the detection of PPF in phosphate buffer by using chronoamperometry with a wide linear range of 5 to 110 µM (at an applied potential of 0.3 V vs. Ag/AgCl). The sensor's practical potency was confirmed in human serum with a dynamic linear range of 10 to 130 µM. The sensor exhibited a good limit of detection values in phosphate buffer (2 µM) and natural human plasma (4 µM). The new sensor displays different dimensions of information while displaying high sensitivity, selectivity, and long-term stability. The outstanding analytical performance of the developed sensor holds considerable promise for the continuous monitoring of propofol, its effective management, and optimization of the doses in the patient's body.


Assuntos
Anestésicos , Quitosana , Propofol , Humanos , Titânio , Fosfatos
5.
Biosensors (Basel) ; 13(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185495

RESUMO

Environmental toxic pollutants and pathogens that enter the ecosystem are major global issues. Detection of these toxic chemicals/pollutants and the diagnosis of a disease is a first step in efficiently controlling their contamination and spread, respectively. Various analytical techniques are available to detect and determine toxic chemicals/pathogens, including liquid chromatography, HPLC, mass spectroscopy, and enzyme-linked immunosorbent assays. However, these sensing strategies have some drawbacks such as tedious sample pretreatment and preparation, the requirement for skilled technicians, and dependence on large laboratory-based instruments. Alternatively, biosensors, especially paper-based sensors, could be used extensively and are a cost-effective alternative to conventional laboratory testing. They can improve accessibility to testing to identify chemicals and pollutants, especially in developing countries. Due to its low cost, abundance, easy disposal (by incineration, for example) and biocompatible nature, paper is considered a versatile material for the development of environmentally friendly electrochemical/optical (bio) sensor devices. This review presents an overview of sensing platforms constructed from paper, pointing out the main merits and demerits of paper-based sensing systems, their fabrication techniques, and the different optical/electrochemical detection techniques that they exploit.


Assuntos
Técnicas Biossensoriais , Poluentes Ambientais , Papel , Ecossistema , Técnicas Biossensoriais/métodos , Monitoramento Ambiental , Técnicas Eletroquímicas/métodos
6.
Biosensors (Basel) ; 13(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36979610

RESUMO

Cancer is one of the major public health issues in the world. It has become the second leading cause of death, with approximately 75% of cancer deaths transpiring in low- or middle-income countries. It causes a heavy global economic cost estimated at more than a trillion dollars per year. The most common cancers are breast, colon, rectum, prostate, and lung cancers. Many of these cancers can be treated effectively and cured if detected at the primary stage. Nowadays, around 50% of cancers are detected at late stages, leading to serious health complications and death. Early diagnosis of cancer diseases substantially increases the efficient treatment and high chances of survival. Biosensors are one of the potential screening methodologies useful in the early screening of cancer biomarkers. This review summarizes the recent findings about novel cancer biomarkers and their advantages over traditional biomarkers, and novel biosensing and diagnostic methods for them; thus, this review may be helpful in the early recognition and monitoring of treatment response of various human cancers.


Assuntos
Técnicas Biossensoriais , Neoplasias Pulmonares , Masculino , Humanos , Biomarcadores Tumorais , Biomarcadores , Neoplasias Pulmonares/diagnóstico , Técnicas Biossensoriais/métodos
7.
Diagnostics (Basel) ; 11(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34829430

RESUMO

The design and development of biosensors, analytical devices used to detect various analytes in different matrices, has emerged. Biosensors indicate a biorecognition element with a physicochemical analyzer or detector, i.e., a transducer. In the present scenario, various types of biosensors have been deployed in healthcare and clinical research, for instance, biosensors for blood glucose monitoring. Pathogenic microbes are contributing mediators of numerous infectious diseases that are becoming extremely serious worldwide. The recent outbreak of COVID-19 is one of the most recent examples of such communal and deadly diseases. In efforts to work towards the efficacious treatment of pathogenic viral contagions, a fast and precise detection method is of the utmost importance in biomedical and healthcare sectors for early diagnostics and timely countermeasures. Among various available sensor systems, optical biosensors offer easy-to-use, fast, portable, handy, multiplexed, direct, real-time, and inexpensive diagnosis with the added advantages of specificity and sensitivity. Many progressive concepts and extremely multidisciplinary approaches, including microelectronics, microelectromechanical systems (MEMSs), nanotechnologies, molecular biology, and biotechnology with chemistry, are used to operate optical biosensors. A portable and handheld optical biosensing device would provide fast and reliable results for the identification and quantitation of pathogenic virus particles in each sample. In the modern day, the integration of intelligent nanomaterials in the developed devices provides much more sensitive and highly advanced sensors that may produce the results in no time and eventually help clinicians and doctors enormously. This review accentuates the existing challenges engaged in converting laboratory research to real-world device applications and optical diagnostics methods for virus infections. The review's background and progress are expected to be insightful to the researchers in the sensor field and facilitate the design and fabrication of optical sensors for life-threatening viruses with broader applicability to any desired pathogens.

8.
Mikrochim Acta ; 187(1): 29, 2019 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-31813061

RESUMO

This review (with 163 refs) covers the recent developments of nanomaterial-based optical and electrochemical sensors for mycotoxins. The review starts with a brief discussion on occurrence, distribution, toxicity of mycotoxins and the legislations in monitoring their levels. It further outlines the research methods, various recognition matrices and the strategies involved in the development of highly sensitive and selective sensor systems. It also points out the salient features and importance of aptasensors in the detection of mycotoxins along with the different immobilization methods of aptamers. The review meticulously discusses the performance of different optical and electrochemical sensors fabricated using aptamers coupled with nanomaterials (CNT, graphene, metal nanoparticles and metal oxide nanoparticles). The review addresses the limitations in the current developments as well as the future challenges involved in the successful construction of aptasensors with the functionalized nanomaterials. Graphical abstract Recent developments in nanomaterial based aptasensors for mycotoxins are summarized. Specifically, the efficiency of the nanomaterial coupled aptasensors (such as CNT, graphene, metal nanoparticles and metal oxide nanoparticles) in optical and electrochemical methods are discussed.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Técnicas Eletroquímicas , Micotoxinas/análise , Nanoestruturas/química , Imagem Óptica , Humanos , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA