Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340201

RESUMO

In this study, a thermoplastic elastomer sensor fiber was embedded in an elastomer matrix. The effect of the matrix material on the sensor properties and the piezoresistive behavior of the single fiber-matrix composite system was investigated. For all composites, cycling test (dynamic test) and the relaxation behavior at different strains (quasi-static test) were investigated. In all cases, dynamic properties and quasi-static significantly changed after embedding, compared to the pure fiber. The composite with the silicone elastomer PDMS (Polydimethylsiloxane) as matrix material exhibited deviation from linear response of the resistivity at low strains and proved an unsuitable choice compared to natural rubber. The addition of a spring construct in the embedded sensor fiber natural rubber composite improved the linearity at low strains but increased the mechanical and electrical hysteresis of the soft matter sensor composite. Using pre-vulcanized natural rubber improved linearity at low strains and reduced significantly the stress and relative resistance relaxation as well as the resistance hysteresis, especially if the resistance remained low. In both cases of the pre-vulcanized rubber and the spring structure, the piezoresistive behavior was improved, and at the same time, the stiffness of the system was increased indicating that using a stiffer matrix can be a strategy for improving the sensor properties.

2.
J Mater Sci Mater Med ; 22(10): 2165-73, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21842140

RESUMO

Scan-LED-technology is a new rapid prototyping technique with increasing applications in the production of custom-made medical products. The present work is dealing with the examination of a silica/urethandimethacrylate (UDMA) nanocomposite for application in scan-LED-technology. The use of specific LED in a photo-DSC unit enables the simulation of crucial parameters of nanoparticle-filled resins for their application in scan-LED-technology. The conversion of double bonds during the curing reaction and the rate of conversion were studied as a function of radiation intensity, silica nanoparticle content, and silanization of the nanoparticles with 3-methacryloyloxypropyl-trimethoxysilane (MPTMS). The conversion of double bonds is increasing with increasing radiation intensity. The increasing conversion of the nanoparticle-filled resins is discussed as a combined effect of increasing nanoparticle content, alternated initiator/double bond ratio and increasing radiation intensity. A significant dependence of the reaction rate on nanoparticle content could not be found. Only for the unfilled resin, the rate was increasing at higher radiation intensities. The influence of residual solvent on conversion and rate of reaction was also analyzed. TGA measurements combined with FTIR were used to study the silanization of the nanoparticles. The silane layer thickness on the surface of the silica nanoparticles was determined.


Assuntos
Metacrilatos/química , Nanopartículas/química , Poliuretanos/química , Resinas Sintéticas/química , 2-Propanol , Materiais Biocompatíveis , Estrutura Molecular , Silanos/química , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA