Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35806014

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have great potential for use in medicine, but they may cause side effects due to oxidative stress. In our study, we investigated the effects of silica-coated SPIONs on endothelial cells and whether oleic acid (OA) can protect the cells from their harmful effects. We used viability assays, flow cytometry, infrared spectroscopy, fluorescence microscopy, and transmission electron microscopy. Our results show that silica-coated SPIONs are internalized by endothelial cells, where they increase the amount of reactive oxygen species (ROS) and cause cell death. Exposure to silica-coated SPIONs induced accumulation of lipid droplets (LD) that was not dependent on diacylglycerol acyltransferase (DGAT)-mediated LD biogenesis, suggesting that silica-coated SPIONs suppress LD degradation. Addition of exogenous OA promoted LD biogenesis and reduced SPION-dependent increases in oxidative stress and cell death. However, exogenous OA protected cells from SPION-induced cell damage even in the presence of DGAT inhibitors, implying that LDs are not required for the protective effect of exogenous OA. The molecular phenotype of the cells determined by Fourier transform infrared spectroscopy confirmed the destructive effect of silica-coated SPIONs and the ameliorative role of OA in the case of oxidative stress. Thus, exogenous OA protects endothelial cells from SPION-induced oxidative stress and cell death independent of its incorporation into triglycerides.


Assuntos
Nanopartículas de Magnetita , Dióxido de Silício , Morte Celular , Células Endoteliais , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas de Magnetita/química , Ácido Oleico/farmacologia , Estresse Oxidativo , Dióxido de Silício/farmacologia
2.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187334

RESUMO

Glioblastoma (GBM), the most common primary brain tumor, is a complex and extremely aggressive disease. Despite recent advances in molecular biology, there is a lack of biomarkers, which would improve GBM's diagnosis, prognosis, and therapy. Here, we analyzed by qPCR the expression levels of a set of miRNAs in GBM and lower-grade glioma human tissue samples and performed a survival analysis in silico. We then determined the expression of same miRNAs and their selected target mRNAs in small extracellular vesicles (sEVs) of GBM cell lines. We showed that the expression of miR-21-5p was significantly increased in GBM tissue compared to lower-grade glioma and reference brain tissue, while miR-124-3p and miR-138-5p were overexpressed in reference brain tissue compared to GBM. We also demonstrated that miR-9-5p and miR-124-3p were overexpressed in the sEVs of GBM stem cell lines (NCH421k or NCH644, respectively) compared to the sEVs of all other GBM cell lines and astrocytes. VIM mRNA, a target of miR-124-3p and miR-138-5p, was overexpressed in the sEVs of U251 and U87 GBM cell lines compared to the sEVs of GBM stem cell line and also astrocytes. Our results suggest VIM mRNA, miR-9-5p miRNA, and miR-124-3p miRNA could serve as biomarkers of the sEVs of GBM cells.


Assuntos
Neoplasias Encefálicas/genética , Vesículas Extracelulares/genética , Glioblastoma/genética , MicroRNAs/genética , Astrócitos/patologia , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Vesículas Extracelulares/patologia , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/patologia , Humanos , Prognóstico , RNA Mensageiro/genética
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(3): 247-265, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29229414

RESUMO

Cancer cells driven by the Ras oncogene scavenge unsaturated fatty acids (FAs) from their environment to counter nutrient stress. The human group X secreted phospholipase A2 (hGX sPLA2) releases FAs from membrane phospholipids, stimulates lipid droplet (LD) biogenesis in Ras-driven triple-negative breast cancer (TNBC) cells and enables their survival during starvation. Here we examined the role of LDs, induced by hGX sPLA2 and unsaturated FAs, in protection of TNBC cells against nutrient stress. We found that hGX sPLA2 releases a mixture of unsaturated FAs, including ω-3 and ω-6 polyunsaturated FAs (PUFAs), from TNBC cells. Starvation-induced breakdown of LDs induced by low micromolar concentrations of unsaturated FAs, including PUFAs, was associated with protection from cell death. Interestingly, adipose triglyceride lipase (ATGL) contributed to LD breakdown during starvation, but it was not required for the pro-survival effects of hGX sPLA2 and unsaturated FAs. High micromolar concentrations of PUFAs, but not OA, induced oxidative stress-dependent cell death in TNBC cells. Inhibition of triacylglycerol (TAG) synthesis suppressed LD biogenesis and potentiated PUFA-induced cell damage. On the contrary, stimulation of LD biogenesis by hGX sPLA2 and suppression of LD breakdown by ATGL depletion reduced PUFA-induced oxidative stress and cell death. Finally, lipidomic analyses revealed that sequestration of PUFAs in LDs by sPLA2-induced TAG remodelling and retention of PUFAs in LDs by inhibition of ATGL-mediated TAG lipolysis protect from PUFA lipotoxicity. LDs are thus antioxidant and pro-survival organelles that guard TNBC cells against nutrient and lipotoxic stress and emerge as attractive targets for novel therapeutic interventions.


Assuntos
Neoplasias da Mama/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Gotículas Lipídicas/enzimologia , Proteínas de Neoplasias/metabolismo , Fosfolipases A2 Secretórias/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Ácidos Graxos Ômega-3/genética , Ácidos Graxos Ômega-6/genética , Feminino , Humanos , Lipase/genética , Lipase/metabolismo , Gotículas Lipídicas/patologia , Proteínas de Neoplasias/genética , Fosfolipases A2 Secretórias/genética , Triglicerídeos/genética , Triglicerídeos/metabolismo
4.
Acta Chim Slov ; 64(3): 549-554, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28862289

RESUMO

Cytosolic lipid droplets (LDs) store excess fatty acids (FAs) in the form of neutral lipids and prevent starvation-induced cancer cell death. Here we studied the ability of mono- and polyunsaturated FAs to affect LD formation and survival in HeLa cervical cancer cells. We found that the LD content in HeLa cells increases with cell density, but it decreases in MDA-MB-231 breast cancer cells. Exogenously-added unsaturated FAs, including oleic (OA), linoleic (LA), arachidonic (AA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) displayed a similar ability to alter LD formation in HeLa cells. There was a dual, concentration-dependent effect on neutral lipid accumulation: low micromolar concentrations of LA, AA and DHA reduced, while all FAs induced LD formation at higher concentrations. In serum starved He-La cells, OA stimulated LD formation, but, contrary to expectations, it promoted cell death. Our results reveal a link between cell population density and LD formation in HeLa cells and show that unsaturated FAs may both suppress or stimulate LD formation. This dynamic regulation of LD content must be accounted for when studying the effects of lipids and lipid metabolism-targeting drugs on LD metabolism in HeLa cells.


Assuntos
Ácidos Graxos Insaturados , Células HeLa , Gotículas Lipídicas , Neoplasias do Colo do Útero/química , Contagem de Células , Ácidos Graxos , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA