Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(30): 9289-9295, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39018360

RESUMO

Solid state quantum emitters are a prime candidate in distributed quantum technologies since they inherently provide a spin-photon interface. An ongoing challenge in the field, however, is the low photon extraction due to the high refractive index of typical host materials. This challenge can be overcome using photonic structures. Here, we report the integration of V2 centers in a cavity-based optical antenna. The structure consists of a silver-coated, 135 nm-thin 4H-SiC membrane functioning as a planar cavity with a broadband resonance yielding a theoretical photon collection enhancement factor of ∼34. The planar geometry allows us to identify over 20 single V2 centers at room temperature with a mean (maximum) count rate enhancement factor of 9 (15). Moreover, we observe 10 V2 centers with a mean absorption line width below 80 MHz at cryogenic temperatures. These results demonstrate a photon collection enhancement that is robust to the lateral emitter position.

2.
Phys Rev Lett ; 132(18): 180804, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759189

RESUMO

Quantum state readout is a key requirement for a successful qubit platform. In this work, we demonstrate a high-fidelity quantum state readout of a V2 center nuclear spin based on a repetitive readout technique. We demonstrate up to 99.5% readout fidelity and 99% for state preparation. Using this efficient readout, we initialize the nuclear spin by measurement and demonstrate its Rabi and Ramsey nutation. Finally, we use the nuclear spin as a long-lived memory for quantum sensing application of a weakly coupled diatomic nuclear-spin bath.

3.
Phys Rev Lett ; 132(9): 090601, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489642

RESUMO

Nuclear spins with hyperfine coupling to single electron spins are highly valuable quantum bits. Here we probe and characterize the particularly rich nuclear-spin environment around single silicon vacancy color centers (V2) in 4H-SiC. By using the electron spin-3/2 qudit as a four level sensor, we identify several sets of ^{29}Si and ^{13}C nuclear spins through their hyperfine interaction. We extract the major components of their hyperfine coupling via optical detected nuclear magnetic resonance, and assign them to shells in the crystal via the density function theory simulations. We utilize the ground-state level anticrossing of the electron spin for dynamic nuclear polarization and achieve a nuclear-spin polarization of up to 98±6%. We show that this scheme can be used to detect the nuclear magnetic resonance signal of individual spins and demonstrate their coherent control. Our work provides a detailed set of parameters and first steps for future use of SiC as a multiqubit memory and quantum computing platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA